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Abstract— How to represent the object more appropriately in
oriented object detection is an essential problem to be solved,
because there are many solutions for the object represented. It is
a relatively novel approach to represent objects as a number
of sample points useful for both localization and recognition.
However, the current point-set-based representation methods
do not effectively supervise all points for learning, and the
internal information of the convex hull in the point set cannot
be effectively learned. Therefore, this letter proposes point set
distance (PSD) loss, which learns set-to-set supervision of objects
to effectively represent objects. Besides, most of the current
sample selection strategies are based on the Intersection over
Union (IoU), but these methods cannot comprehensively measure
candidate samples’ quality. To select high-quality point sets,
we propose to use the probability distribution of point sets to
select the positive samples. Our probabilistic point set sample
selection (PPSS) scheme effectively exploits the classification
information, regression information, and distribution character-
istics of the point set. Experimental results on remote-sensing
image datasets, including DOTA, DIOR-R, and HRSC2016,
demonstrate the proposed method for arbitrary-oriented object
detection achieves consistent and substantial improvements.

Index Terms— Oriented object detection, points representation,
remote-sensing images, sample selection.

I. INTRODUCTION

OBJECT detection in remote-sensing images is to accu-
rately locate and identify the objects of interest. It has

become crucial in many real-world applications such as town
planning, strategic deployment in the military field, and Earth
observation [1]. Object detection in remote-sensing images has
very promising applications, but there are still some challenges
that need to be overcome.

Due to the arbitrary orientation, dense distribution, and
complex background of the object in remote-sensing images,
the horizontal bounding boxes do not represent their semantic
and localization information properly, resulting in the per-
formance of various detectors being greatly limited. As a
result, the currently popular approaches of object detection
in remote-sensing images use oriented bounding boxes to
represent the objects, for which most angle-based detectors
achieve excellent performance. However, the boundary discon-
tinuity and square-like problem are obstacles to high-precision

Manuscript received 31 May 2023; revised 20 August 2023; accepted
6 September 2023. Date of publication 12 September 2023; date of current
version 2 October 2023. (Corresponding author: Zhiqiang Zhou.)

The authors are with the School of Automation, Beijing Institute
of Technology, Beijing 100081, China (e-mail: bitsongjj@gmail.com;
miaolingjuan@bit.edu.cn; zhzhzhou@bit.edu.cn; chaser.ming@gmail.com;
bitdyp@gmail.com).

Digital Object Identifier 10.1109/LGRS.2023.3314517

Fig. 1. Illustration of point representation for oriented object detection. CFA
[4] cannot effectively capture information inside the object, and G-Rep [7]
does not capture the boundary information of the object. Our method makes
the points better distributed on the object.

locating, as detailed in [2] and [3]. In addition, fea-
tures extracted from the oriented bounding box are heavily
influenced by background information or uninformative fore-
ground areas that contain little semantic information. Many
researchers [4], [5], [6], [7] try to abandon the anchor and
use a number of points to represent the object to solve the
above problems. This point set learning method uses the
adaptive points representation for oriented object detection,
which exploits the captured geometric and semantic infor-
mation of arbitrarily oriented objects. As shown in Fig. 1,
CFA [4] cannot effectively capture the semantic information
of objects. It uses convex hull Intersection over Union (IoU)
loss to optimize the position information of the point set.
However, the convex hull IoU loss in the training stage only
supervises the geometric information of the point set, and
its internal points are not optimized, resulting in redundant
information of the point set that cannot well capture semantic
information. G-Rep [7] converts the point set into Gaussian
distribution and uses the Gaussian metric-based regression loss
to optimize the position of the point set. However, the Gaussian
metric-based regression loss guides the point set to distribute
in the middle region of the object and does not capture the
boundary information of the object.

Besides, the most popular strategy to determine positive
samples is to use the IoU metric between anchors and ground
truth (GT). However, the strategy has an obvious limitation in
that it ignores the actual content of the intersecting regions,
and these regions may contain noisy backgrounds, other
objects, or regions that are not meaningful for detection.
Several studies [8], [9] have pointed out this limitation and
proposed various new sample selection strategies to improve
the performance of detectors. However, due to the complex
background, dense distribution, and arbitrary orientation of
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Fig. 2. Architecture of the proposed method. PPSS is used to select more promising samples and prevent filtering out high-quality samples. The collaboration
loss is composed of IoU loss and our proposed PSD loss, which achieves better convergence and performance. DCN is deformable convolution.

objects in remote-sensing images, the limitation still cannot
be effectively eliminated.

In this letter, to solve the above issues, we propose the point
set distance (PSD) loss, which provides set-to-set supervision
to better capture the geometric and semantic information of
the objects. We also proposed a probabilistic point set sample
selection (PPSS) strategy for the point-based model, which
combines regression scores, classification scores, and point set
similarity to select high-quality positive samples.

II. PROPOSED METHOD

A. Overview of the Proposed Method
The proposed method is built on RepPoints [10], which

is a representative-oriented anchor-free method. As shown in
Fig. 2, the whole method consists of a backbone network
with FPN, initial detection head, and refinement detection
head. The initial detection head generates coarse point sets,
which are converted into convex hulls using the Jarvis March
algorithm [11] and further refined in the refinement detection
head inspired by [4]. The proposed PSD loss assists IoU loss in
the refinement stage to provide set-to-set supervision of objects
to adaptively select suitable matching pairs according to the
current optimization situation. The PSD loss guides the point
set to characterize the object more efficiently, learning the
geometric and semantic information of objects. The proposed
PPSS scheme is adopted in the refinement detection head,
which helps to consider the classification score, regression
score, and points similarity of the point set simultaneously.
Then, the candidate samples are adaptively classified into
positive samples and negative samples based on the above
multitask information, to select high-quality positive samples.
PSD loss and the PPSS scheme are described in the following
sections.

B. Set-to-Set Supervision for Optimal Object Representation
In point-set-based models, deformable convolution is used

to adjust the locations of sampled points with offsets predicted

Fig. 3. Illustration of PSD loss and IoU loss optimization process (a) denotes
the process of the IoU loss function and (b) denotes the process of our PSD
loss assists IoU loss to optimize the point set. The green points are based
on GT, and the additional construction points are in the middle of the four
corners and the center of the GT. The red points denote the point set predicted
by the refinement stage.

by the model. However, current methods use IoU loss or
Gaussian distance loss, and these methods cannot effectively
supervise the point set and only optimize the location of points
based on geometric information. The points inside the convex
hull lack additional supervision information for position opti-
mization, which will result in the sampling positions of the
deformable convolution not covering the object appropriately.
To capture high-quality semantic and geometric information of
objects, we propose a point set similarity distance (PSD) loss,
which introduces set-to-set supervision to make the point set
evenly distributed on the object. PSD loss assists IoU loss in
providing guidance information for the optimization of model
parameters. The point set uniformly covers the object which
is more appropriate to represent its semantic and geometric
information.

In Fig. 3, the nine red points denote the point set predicted
by the refinement stage. They are then optimized using the
supervision information provided by the preset green points.
Since the regression of the point set is disordered, we regard
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the matching of the point set and GT as a dynamic problem
and use the Hungarian matching algorithm to solve the above
problem. To find a bipartite matching between GT and predic-
tion, we search for a permutation of the nine points with the
lowest cost

σ = argmin
σ∈SN

N∑
i

Lmatch
(
gi , pσ(i)

)
(1)

where SN denotes all possible permutations of indices 1 ∼ N
for these points (N = 9), and Lmatch(gi , pσ(i)) is a pair-wise
matching cost between gi of GT and a prediction with the
index σ(i). σ is the optimal assignment obtained by minimiz-
ing the overall matching cost. Based on the assignment results,
the definition of PSD loss is as follows:

LPSD(p, g) =
1
N

N∑
i=1

L reg
(

pσ(i), gi
)

(2)

where pσ is the optimal bipartite matching and L reg denotes
the smooth L1 loss.

PSD loss guides point set to well capture semantic infor-
mation and geometric information of the object. As shown
in Fig. 3(b), PSD loss adaptively selects suitable matching
pairs according to the current optimization situation and can
be collaborated with the IoU loss to further optimize the
point set. As a result, as shown in Fig. 1, our method can
generate the point set with the distribution more appropriate
for representing objects.

C. Probabilistic Point Set Sample Selection

The main-stream label assignment strategies are typically
performed based on IoU, but these strategies ignore the actual
content of the intersecting regions. Moreover, the RepPoints
method lacks direct supervision of the point set, while learning
high-quality point sets is crucial to capturing the geometric
and semantic features of dense and arbitrarily oriented objects.
Therefore, to measure the quality of candidate samples more
appropriately, we consider the regression score, classification
score, and point set similarity as metrics and combine these
three metrics to select high-quality positive samples.

The score of the points set is defined as follows:

S = Scls + Sloc + Ssim (3)

where Scls and Sloc denote the classification score and regres-
sion score of the point set, respectively, and Ssim denotes the
point set similarity score formulated by the proposed PSD loss.
Note that the lower values of S indicate the higher quality of
the samples. Let Gcls denote the class label for GT, and Pcls

denote the predicted class confidence based on the learned
point set. Scls is defined as

Scls = Lcls
(

Pcls, Gcls) (4)

where Lcls denotes focal loss. In (3), we use the loss function
Sloc to eliminate the gap between classification and regression,
which is defined as follows:

Sloc =
1
M

M∑
n=1

L loc
(

P loc
n , G loc) (5)

where M is the number of candidate point sets and L loc is the
IoU loss for the oriented polygon. P loc and G loc represent the
position of the predicted point set in the refinement stage and
the GT box, respectively.

Note that the position of the point set represents the sam-
pling position of the deformable convolution, which indicates
the potential of capturing the geometric and semantic infor-
mation of objects. To fully exploit the information of the point
set, Ssim is proposed to measure point set similarity as follows:

Ssim = LPSD
(

P loc,Rloc) (6)

where Rloc represents the supervised information of the point
set that we construct based on GT. LPSD is the proposed PSD
loss function.

Based on the obtained point set scores, we use the Gaussian
mixture model (GMM) to simulate the score distribution of
point sets

P(s|θ) = w1N1(s; m1, p1) + w2N2(s; m2, p2) (7)

where N1 and N2 denote the Gaussian distribution probability
densities of positive and negative samples (with the mean
and precision parameters (m1, p1) and (m2, p2), respectively).
w1 and w2 are their weights, and s and θ are the point
set scores and GMM parameters. Given a set of point set
scores, the likelihood of this GMM can be optimized using the
expectation-maximization (EM) algorithm. With the parame-
ters estimated by EM, the probability of the point set being a
positive or a negative sample can be determined.

III. EXPERIMENTS

A. Datasets

In the experiments, the proposed method is validated on
DOTA [12], DIOR-R [13], and HRSC2016 [14] datasets.

1) DOTA: DOTA is a large dataset for oriented object
detection, which contains 2806 images and 15 categories.
We cropped the images into 1024 × 1024 patches with a stride
of 824. We only use a single scale for training and testing.

2) DIOR-R: DIOR-R annotated the oriented bounding
boxes for every instance, which includes 23 463 images with
size 800 × 800 and 20 categories. The training, validation, and
test sets include 5862, 5863, and 11 738 images, respectively.
We used the training and validation sets for training and
evaluated the performance on the test set.

3) HRSC2016: HRSC2016 dataset contains 1061 images
with 2886 samples. The image sizes range from 300 × 300 to
1500 × 900. The training, validation, and test sets include
436, 181, and 444 images, respectively. For this dataset, the
shorter sides of the images are resized to 800 while the longer
sides are kept less than or equal to 1333 with the aspect ratios
unchanged.

B. Implementation Details

We chose ResNet50 with FPN as the backbone network for
ablation experiments. Our model is built and trained based
on the MMRotate [15] platform. We train the model with
40, 40, and 80 epochs for DOTA, DIOR-R, and HRSC2016,
respectively. In all experiments, the SGD optimizer is adopted
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DOTA DATASET. THE RESULTS WITH RED COLOR DENOTE THE BEST RESULTS AND WITH

BLUE COLOR PRESENT THE SECOND-BEST RESULTS IN EACH COLUMN

Fig. 4. Comparison of detection results in DOTA with two methods. The upper image is the baseline method while the bottom is our proposed method.

with an initial learning rate of 0.008, and the learning rate is
divided by 10 at each decay step. The momentum and weight
decay are 0.9 and 0.0001, respectively. We use two RTX 3090
GPUs for training with a total batch size of 4 (two images
per GPU). The results are tested on a single RTX 3090 GPU
using VOC2007 metrics.

C. Comparisons With State-of-the-Art
Table I shows the comparison results with state-of-the-

art methods on the OBB task of the DOTA dataset. Our
method with ResNet50 achieves a mAP of 76.59%, which
outperforms all single-scale models without bells and whistles.
Our methods with Swin Transformer (Swin-T) achieve state-
of-the-art detection accuracies (78.03% in mAP) without data
augmentation compared with other single-scale methods. The
visualization of the baseline and our approach to DOTA are
shown in Fig. 4. Compared with Rotate RepPoints, our method
achieves higher recall and precision for objects with arbitrary
orientation and dense distribution.

The comparison results with state-of-the-art methods on the
HRSC2016 dataset are shown in Table II, and our method with

TABLE II
COMPARISON WITH OTHER METHODS ON THE HRSC2016 DATASET

ResNet50 achieves competitive performance (89.53% mAP)
without any tricks. SASM [5] is good at detecting long-
oriented objects, so it can achieve excellent performance in
the HRSC2016 dataset.

D. Ablation Studies

1) Effectiveness of PSD: As shown in Table III, PSD loss on
the DOTA dataset obtains consistent gains on different models.
As shown in Table IV, when we introduce the PSD in the
regression loss, we obtained gains of 0.23% mAP, 0.33% mAP,
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TABLE III
PERFORMANCE IMPROVEMENT OF PSD ON DIFFERENT

REPPOINTS-BASED MODELS

TABLE IV
ABLATION STUDY RESULTS BASED ON REPPOINTS FROM THE DOTA,

DIOR-R, AND HRSC2016 DATASETS. “I” AND “TI” INDICATE THE
INDIVIDUAL IMPROVEMENT AND THE TOTAL

IMPROVEMENT IN MAP

TABLE V
COMPARISONS WITH DIFFERENT SAMPLE ASSIGNMENT METHODS ON

ROTATED REPPOINTS DETECTOR

0.41% mAP on the DOTA, DIOR-R, and HRSC2016 dataset,
respectively.

2) Effectiveness of PPSS: We compare the proposed PPSS
method with other sample selection schemes for training the
rotate RepPoints detector, including Max-IoU [16], CFA [4],
APAA [6], and SASM [5]. As shown in Table V, our method
achieved 76.36% mAP on the DOTA dataset, which is 7.68%
mAP higher than the baseline. Our method achieves great
gains on both DIOR-R and HRSC2016 datasets. Our PPSS
scheme achieves the best performance on different datasets
without complicated operations, which demonstrates that our
proposed PPSS is effective for point set learning.

IV. CONCLUSION

In this letter, the PSD loss is proposed to solve the rep-
resentation ambiguity and accelerate network convergence in
oriented object detection. Our method effectively learns the
geometric and semantic information of objects, allowing the
point set to characterize the object more efficiently. Moreover,
to effectively learn the adaptive point set, we introduced the
PPSS scheme to select the high-quality points samples for
training based on the probability distribution of the point set
scores. Extensive experiments on multiple datasets demon-
strated the superiority of our approach.
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