IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 71

Fine-Grained Object Detection in Remote Sensing
Images via Adaptive Label Assignment and
Refined-Balanced Feature Pyramid Network

Junjie Song, Lingjuan Miao ", Qi Ming

Abstract—Object detection in high-resolution remote sensing
images remains a challenging task due to the uniqueness of its view-
ing perspective, complex background, arbitrary orientation, etc.
For fine-grained object detection in high-resolution remote sensing
images, the high intra-class similarity is even more severe, which
makes it difficult for the object detector to recognize the correct
classes. In this article, we propose the refined and balanced feature
pyramid network (RB-FPN) and center-scale aware (CSA) label
assignment strategy to address the problems of fine-grained object
detection in remote sensing images. RB-FPN fuses features from
different layers and suppresses background information when fo-
cusing on regions that may contain objects, providing high-quality
semantic information for fine-grained object detection. Intersection
over Union (IoU) is usually applied to select the positive candidate
samples for training. However, IoU is sensitive to the angle vari-
ation of oriented objects with large aspect ratios, and a fixed IoU
threshold will cause the narrow oriented objects without enough
positive samples to participate in the training. In order to solve
the problem, we propose the CSA label assignment strategy that
adaptively adjusts the IoU threshold according to statistical char-
acteristics of oriented objects. Experiments on FAIRIM dataset
demonstrate that the proposed approach is superior. Moreover, the
proposed method was applied to the fine-grained object detection
in high-resolution optical images of 2021 Gaofen challenge. Our
team ranked sixth and was awarded as the winning team in the
final.

Index Terms—Feature pyramid network, fine-grained object
detection, label assignment, remote sensing images.

1. INTRODUCTION

BJECT detection in high-resolution remote sensing image
O is to accurately locate and identify the object of inter-
est. Automated analysis and understanding for remote sensing
images have become critically important in many real-world
applications, such as town planning, strategic deployment in
the military field, and Earth observation [1], [2], [3], [4]. Thus,
object detection in remote sensing images has a very broad
application prospect.
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Fig. 1. Tllustration of fine-grained objects detection, objects have high inter-
class variation and low inter-class variation, which make object detection an
even more challenging task.

In recent years, with the development of convolutional neural
networks (CNN), the field of computer vision has grown con-
siderably due to the powerful feature extraction capability of
CNN. Various vision-based tasks including classification, object
detection, and semantic segmentation have been able to achieve
superior performance. A number of CNN-based object detec-
tors [5], [6], [7], [8] have made significant progress and achieved
excellent performance on MS COCO dataset [9] and PASCAL
VOC dataset [ 10]. However, most of the existing techniques tend
to suffer from dramatic performance degradation when applied
to remote sensing images, mainly due to the difference between
remote sensing images and natural scene images. Objects in
remote sensing images are usually densely distributed, appear
in arbitrary orientations, and have large scale variations, which
make object detection an even more challenging task. As shown
in Fig. 1, for fine-grained object detection, the high intra-class
variation and low inter-class variation lead to limitations in the
performance of various detectors.

To solve these issues, a number of approaches [11], [12], [13],
[14], [15], [16], [17], [18], [19] have been developed. Feature
pyramid network (FPN) [20] provides an effective solution to
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the problem of large-scale variation in images. The hierarchical
structure of FPN makes the feature maps at different levels
contain feature information at different scales. In the FPN,
information can be interacted between different layers, which
effectively improve the accuracy of multiscale object detection.
Howeyver, the FPN makes the semantic information between the
feature maps of nonadjacent levels sparse when fusing the infor-
mation of feature maps. Furthermore, objects in remote sensing
images usually suffer from a large amount of noises, which
greatly affects the performance of the detector. In fine-grained
object detection, we need to feed high quality feature maps with
richer semantic information into the detector.

Meanwhile, most of existing object detectors employ the
Intersection of Union (IoU) as a matching metric to select
the high-quality samples for classification and localization. The
performance of the detector will be greatly affected if label
assignment strategy is not appropriate. The fixed IoU threshold is
usedin RetinaNet [21], while the ATSS [22] set the IoU threshold
dynamically by automatically selecting positive and negative
training samples according to the statistical characteristics of
the data. But the label assignment strategies applied directly
to remote sensing images has some drawbacks, which does
not make full use of the statistical characteristics of oriented
objects. Moreover, there are a large number of narrow objects
with arbitrary orientation in the remote sensing images. IoU
is extremely sensitive to angle changes for narrow oriented
objects, a small angular deviation leads to a dramatic drop in IoU.
Fixed IoU threshold will lead to narrow oriented objects without
sufficient positive samples, which limits the performance of the
detector.

To tackle the above issues, we propose the refined and
balanced feature pyramid network (RB-FPN) and center-scale
aware (CSA) label assignment strategy. RB-FPN closes the
semantic information gap between different layers of the FPN,
and forces each layer of the network to learn the features
of the objects at different resolutions. Moreover, the RB-FPN
eliminates the complex background information and enhances
the semantic representation of feature maps, and enhances the
variance between different features. The obtained high-quality
feature maps are more effective for the recognition of fine-
grained objects. Then we propose a CSA label assignment
strategy to automatically select positive samples according to
statistical characteristics of oriented objects. The CSA label
assignment strategy selects more high-quality positive samples
during training. On the other hand, dynamically adjusting the
ToU threshold according to the statistical characteristics of the
ground truth (GT) boxes enhance the robustness of the detector.
To summarize, the main contributions of this article are as
follows.

1) A refined and balanced feature pyramid network is pro-
posed to reduce the semantic information gap of FPN and
suppress background information while focusing on re-
gions that potentially contain objects. The obtained high-
quality feature maps enable efficient fine-grained object
detection.

2) A novel center-scale aware label assignment strategy is
proposed to dynamically adjust the IoU threshold based
on the IoU distribution around the GT and its aspect ratios.

3) Comprehensive experiments are conducted on the
FAIRIM dataset of Gaofen Challenge to demonstrate the
efficacy as well as the superiority of the proposed methods.

II. RELATED WORKS
A. Generic Object Detection

With the advancement of the deep learning techniques, object
detection has achieved great progress owing to the powerful
representative ability of deep convolutional neural networks.
Most of the existing detectors can be divided into two types:
1) two-stage methods and 2) one-stage methods. The two-stage
detector is a coarse-to-fine structure. In the first stage, a region
proposal network (RPN) is used to generate region of interest
(Rol) that potentially contains objects. In the second stage,
category prediction and location regression are performed on
the selected Rols. The representative two-stage detectors are the
pioneering RCNN family [5], [23], [24].

The simple architecture of one-stage detectors allows for
tradeoffs between accuracy and speed and is more suitable
for real-time detection tasks. One-stage detectors get rid of
the complex regional proposal stage and predict the object
instance categories and their locations directly from densely
predesigned candidate boxes. One-stage detectors are popu-
larized by SSD [7], YOLO family [6], [25], [26], [27], and
RetinaNet [21].

FPN and other similar top—down structures [28], [29], [30],
[31] are proposed to solve the problem of scale variations of
objects. FPN takes advantage of the pyramid shape of convo-
Iution features and combines them in various resolutions to
construct a feature pyramid with rich semantic information
to recognize objects at different scales. PAFPN [32] adds a
bottom—up fusion path to the FPN, fully exploiting the shallow
features of the network. Liu et al. [33] proposed a data-driven
strategy for pyramidal feature fusion method, which learns the
way to spatially filter conflictive information to suppress the
inconsistency.

Many recent works have refined the process of label assign-
ment to further improve detection performance. ATSS [22] au-
tomatically selects positive and negative training samples based
on the statistical characteristics of the objects. Kim et al. [34]
assume that the distribution of joint loss for positive and negative
samples follows the Gaussian distribution. Hence, it uses Gaus-
sian mixture model to fit the distribution of training samples,
and then uses the center of positive sample distribution as the
positives/negatives division boundary. Autoassign [35] tackles
label assignment in a fully data-driven manner by automatically
determining the positives/negatives in both spatial and scale
dimensions. OTA [36] views the label assignment process as
an optimal transportation problem, and the number of anchor
boxes assigned to each GT is dynamically calculated according
to a global anchor box regression state.

B. Oriented Object Detection in Remote Sensing Images

Oriented object detection has attracted plenty of inter-
est, especially in remote sensing images. Oriented object
detectors locate and classify objects with oriented bounding
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Architecture of the proposed method. The output feature maps of FPN are balanced and refined through RB-FPN. CSA label assignment is used to select

more promising samples and prevent filtering out high quality samples. The DKQP attention module is designed to suppress complex background information

while focusing on regions that may contain objects.

boxes, which provide more accurate orientation information of
objects. Yang et al. [14] built an oriented object detection method
on the generic object detection framework of faster R-CNN. Xu
etal. [37] proposed the Gliding Vertex, which learns the four ver-
tex gliding offsets on the regression branch to achieve oriented
object detection. Wei et al. [38] proposed a one-stage, anchor-
free, and nms-free model (O?-DNet) to detect oriented objects
by predicting a pair of midlines inside each object. ReDet [39]
encodes rotation equivariance and rotation invariance in image
features to increase the accuracy of oriented object detection.
Ming et al. [40] designed a new label assignment strategy for
one-stage oriented object detection based on RetinaNet [21]. It
assigns the positive or negative anchors dynamically through
a new matching strategy. Zhang et al. [41] proposed aspect
ratio-guided label assignment to adjust the IoU threshold, and
aspect ratio guided IoU loss is designed to automatically adjust
the weights of the angle regression.

In recent years, an increasing number of works have focused
on fine-grained object detection in remote sensing images. Sun
et al. [42] proposed a cascaded hierarchical object detection
network (CHODNet). CHODNet consists of four stages: 1)
feature refinement network, 2) region proposal network, 3)
proposals refinement network, and 4) fine-grained detection
network. CHDONet learns external and internal representa-
tions independently from the dataset using a cascaded hier-
archical structure. Zhang et al. [43] proposed a multiscale
semantic segmentation feature fusion module, which merges
the semantic features with the original features layer by layer
to distinguish the foreground from the cluttered background.

R? IPoints [44] employs a set of category-aware points to
encode spatial and semantic information oriented to arbitrary
objects.

III. PROPOSED METHOD

Oriented R-CNN (ORCNN) [45] is a superior two-stage
oriented object detector. Our method is based on ORCNN and
consists of the backbone network, RB-FPN, CSA label assign-
ment strategy, oriented RPN, and R-CNN detection head. The
proposed framework is illustrated in Fig. 2. RB-FPN provides
higher quality feature maps for fine-grained object detection by
eliminating background information and balancing the feature
maps in the FPN. CSA label assignment strategy is designed to
select potentially high quality samples based on the statistical
characteristics of GT box. Overall, the model predicts the loca-
tion and fine-grained category information of objects in remote
sensing images more efficiently. More details are to be discussed
in the following subsections.

A. Refined and Balanced Feature Pyramid Network

Deep features in backbones are with more semantic informa-
tion, while the shallow low-level features are more descriptive
in terms of detailed information. The top—bottom hierarchical
network structure of FPN allows the feature maps of different
layers to deliver information. But the sequential manner in
this methods will make fused features focus more on adjacent
resolution. The semantic information contained in nonadjacent
levels is diluted in each fusion during the information flow.



74 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Thus, it is crucial to utilize the features at different levels.
Besides, the complex background information in remote sensing
images usually affects the performance of the detector. It is
important to effectively eliminate the background information
to provide a higher quality feature map for the subsequent tasks.

The proposed refined and balanced feature pyramid network
(RB-FPN) makes the information of different levels of feature
maps more balanced, enriching the semantic information in the
feature maps. First, the feature maps of the different layers are
resized to the same resolution, and the resized feature maps
are then summed in pixelwise. Second, the integrated feature
map is refined by the proposed deformable key—query—position
(DKQP) attention module. Finally, the refined feature map is
added to the original feature maps in the FPN by upsampling
and downsampling, respectively.

Self-attention mechanism has been widely used in the field
of computer vision and performed very well. In determining
the attention weight assigned to a key for a given query, several
properties of the input are usually considered. One is the content
of the query. For self-attention, the query content can be a feature
ata query pixel in an image. The second is the content of the key,
where the key may be a pixel within the local neighborhood of
the query. The third is the relative position of the query and key.
Based on these input properties, Dai et al. [46] argue that the
attention weights are expressed as a sum of four terms (¢q, €2,
€3, €4). Specifically, these factors are the query and key content
(€1), the query content and relative position (e2), the key content
only (e3), and the relative position only (e4).

In our DKQP attention module, we only focus on e, and €3
of the attention factors, since the performance gain provided by
other factors is insignificant when the computational overhead
is taken into account [47]. In addition, deformable convolu-
tion [48] efficiently exploits sparse local locations and captures
high-quality features, and is designed for capturing regions of
interest. Inspired by the properties of deformable convolution,
we use deformable convolutions and learnable vectors in the
self-attention module to focus on regions that may contain
objects, thereby obtaining high-quality feature information. The
proposed DKQP attention focus more on potential object regions
to enhance the semantic information of the feature map.

In deformable convolution, for each position p; in the output
feature map, the output y(p;) is defined as

> w(pn)z(pi + pn + Apn) (M

pnER

y(ps) =

where w(p,,) is the weight for position p,,, x(p) is the feature at
position p, p,, enumerates all the positions in grid R, and Ap,, is
the offset of the convolution sampling location. As illustrated in
Fig. 3, key content attention is e3. The deformable convolution
and another learnable vector are calculated to obtain é;qp, it can
be formulated as follows:

ekar _ T4 )

where [,,, is a learnable vector and x is the reshaped output of
the deformable convolution. Generalized attention formulation
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Fig. 4. Illustration of the process of projection. Red box is a parallelogram
proposal generated by oriented RPN, the green box is the projected proposal.

is as follows:

M
y(q) = Z W, - Z Adeform (g e 2 k) - Wk
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3)
Here, A%P™ (g k. 2,,2;) denotes the attention weights in the
mth attention head, which is calculated from egqp and €3, z, is
query content at index ¢, and xj, is key content at index k. W,
and W, are learnable weights. 2, specifies the supporting key
region for the query. In DKQP attention, we use deformable
convolution and learnable vector instead of query content and
relative position. The feature capture capability of deformable
convolution allows the model to focus more on the Rol Learnable
vector captures global positional bias between the key and
deformable convolution elements. And DKQP attention brings
a lower computational overhead by sampling a sparse set of key
element for each query making the complexity linear to the query
element number.

RB-FPN reduces the semantic gap between different scale
feature layers of the traditional FPN while forcing each layer of
the network to learn the features of the objects at different reso-
lutions. In refine stage, our DKQP attention module suppresses
complex background information while focusing on regions that
potentially contain objects.

B. Center-Scale Aware Label Assignment

In our model, the oriented RPN uses six parameters
(z,y,w, h, Aw, Ah) to denote an oriented proposal. The ori-
ented proposal needs to be projected into a oriented bounding
box, as shown in Fig. 4. During the projection, there will be
misalignment in the region represented by the box. But the center
position does not change during the projection, so the center
position of the prediction box is particularly significant. If the
center distance between the anchor and GT box are relatively
far when selecting positive samples, the quality of the learned
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Fig. 5. Example of IoU for angle deviation of oriented bounding boxes with
different aspect ratios.

samples will be inferior. In sample selection, the samples located
near the center of the GT box are more representative. Moreover,
there are a large number of narrow oriented objects in the remote
sensing images. As shown in Fig. 5, IoU is very sensitive to the
narrow oriented object, at the same aspect ratio, a small angular
deviation causes a sharp drop in IoU. The anchor may still be
a potentially high quality sample at this position, we expect to
select this potentially high quality sample. But it will be filtered
out because the IoU between the anchor and the GT box is less
than a fixed threshold.

To solve the above problems, we propose the CSA la-
bel assignment strategy, which adaptively adjusts the thresh-
old of IoU according to statistical characteristics of oriented
objects. The CSA label assignment algorithm is shown in
Algorithm 1. For each GT box g on the image, we first find out its
candidate positive samples. On each pyramid level, we select &
(k=1,2,3,4....15, default k = 9) anchor boxes whose centers
are closest to the center of GT box based on Euclidean distance.
After that, we compute the IoU between these candidates and
the GT boxes as D,, whose mean is computed as IoU,,,. Then,
calculate the aspect ratio of each GT box as r. The aspect ratio
of GT box is mapped to a constant value greater than or equal to
1 by the function g(r), The specific function g(r) is as follows:

r ifr>1

g(r) = { “)

1/r otherwise
where r = % w and h are the width and height of the GT
box, respectively. Then the function f(r) is used as a mapping
function for the aspect ratio of GT box. The function is to allow
larger aspect ratios to have lower value and mine enough higher
potential samples. The function is defined as follows:

1

1) = S5m0

®)

where ¢(r) is obtained from (4), with mapping function g(r)
and the computed average loU, the final adaptive IoU threshold
is available via CSA label assignment strategy. The specific loU

Algorithm 1: Center-Scale Aware Label Assignment.

Input: 7P is the number of feature pyramid levels;
G is a set of ground truth boxes on the imag;
A is a set of all anchor boxes;
A, is a set of anchor boxes from the ith pyramid levels;
f(r) is a function that maps the aspect ratio
k is a hyperparameter with a default value of 9;
Output: S, is a set of positive samples;
S, is a set of negative samples;
1: for each ground truth g€ G do
2: build an empty set for candidate positive samples of
the ground truth g: Cyy < 0;
for each level i € P do
4. S; < select k anchors from A; whose center are
closest to the center of ground truth g based on
Euclidean distance;
Cy=CyUS;;
end for;
compute IoU between C,; and g : Dy = IoU(Cy, g);
compute mean of D, : IoU,,, = Mean(D,);
9: 1 <— compute the aspect ratio of ground truth g
10: compute ToU threshold i,y := IoU,, * f(7);
11: for each candidate c € C do

(O8]

12: if IoU > Tj,y and center of ¢ in g then
13: Sp=8Ucg

14: end if

15: end for;

16: end for; S, = A — S,;
17: return S, S,;

threshold is as follows:
Tieu = f(r) * IoU,, (6)

where f(r) is obtained from (5), IoU,, is the mean value of IoU
of candidate proposals around GT box. Finally, we select these
candidates whose IoU are greater than or equal to the threshold
Tiou as positive samples.

The proposed CSA label assignment dynamically adjusts the
threshold of IoU according to statistical characteristics of the GT
boxes. Using the CSA label assignment strategy, oriented objects
with large aspect ratios have smaller thresholds, thus ensuring
the potential samples are selected. On the other hand, CSA label
assignment ensures the number of positive samples changes
dynamically according to statistical characteristics of GT boxes,
which help to avoid the training loss being dominated by massive
negatives. It is worthy of mentioning that the proposed label
assignment strategy is only used for training, which does not
incur the computational load at the inference stage.

C. Training

Our method consists of an oriented RPN and an R-CNN
detection head. It is a two-stage detector, where the first stage
generates high-quality oriented proposals in a nearly cost-free
manner and the second stage is R-CNN detection head for
proposal classification and regression. Next, we describe the
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Fig. 6. Detection results of our method on the FAIRIM dataset.
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loss function and representation of oriented RPN and R-CNN
detection head in detail. The oriented RPN uses six parameters
(z,y,w, h, Aw, Ah) to denote an oriented proposal. For bound-
ing box regression, we adopt the affine transformation, which is
formulated as follows:

_(z—z)  (y—ya)
Uy = e y Uy = hy
w h
Uy = log (—) , up = log (—)
Wq, he
Aw Ah
UAw = ——, UAL = ——

h
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ut = (" —ma) _ (Y — ¥a)
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W, v hg
* *
w h
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u,, =log | — |, up =log | —
w (wa> Pk ha
* *
uh = Aw o Ah @)
Aw 'LU* ? Ah h/*

where (x, y), w, and h are the center coordinate, width, and
height of external rectangle, respectively. Specifically, x,, =, ©*
represent values related to anchors, the predicted boxes, and the
GT boxes, the same for y,,y, y*. Aw and Ah are the offsets
of the top and right vertices of the prediction box and anchor
relative to the top and left midpoints. Aw* and Ah* are the
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Comparison of the detection results of the objects with large aspect ratios between the ORCNN (baseline) and our method on the FAIR1M dataset. The

first row is the detection results of the baseline, and the second row is our CSA method.

offsets of the top and right vertices of GT and anchor relative to
the top and left midpoints.
Following is the loss function to train oriented RPN:

Zng (wi,u’). (9)

Here, i is the index for anchors, p; is the GT label of the ith
anchor, p; is the output of the classification branch of oriented
RPN. u; is the supervision offset of the GT box relative to ith
anchor, u; indicate outputs of the regression branch of R-CNN
detection head. L is the cross entropy 1oss, Ly is the Smooth
L1 loss. 11 is the balance parameters (default by 1).

Lrpn Z Lcls pzapz + )¥1

cls reg

The R-CNN detection head uses the five parameters
(z,y,w, h, 0) torepresent an oriented bounding box. The bound-
ing box regression can be described by the following formulas:

- (:z:—xp) o (y_yp)
Vg = y Uy =
Wp hy
w h
vy = log (—) , vy, = log <—) ,v9 =0-10, (10)
Wy hy
’U; _ (117* — xa)’ ’U; _ (y* B yp)
Wp hy
, w* . h* s _ o
v, = log w_p , vy, = log h_p , Vg =0"—=0, (11)
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Here (x, y), w, and h are the center coordinate, width, and height
of external rectangle, respectively. Specifically, x,, x, =*, rep-
resent values related to proposal samples, the predicted box, and
the GT box, the same for y,, y, y*, respectively, the 6 and 0*
denote the angle of the GT box and the angle of the proposal
box.

Following is the loss function to R-CNN detection head:

1
Ncls

N

1 .

Lhcad = o 2 Lree (0, 0)) (12)
reg 4

Z Lcls(piv p;k) + )"2
where Ly is the cross entropy loss. Ly is the Smooth L1 loss.
Ao is the balance parameters (default by 1). ¢ is the index for
proposal, v; is the supervision offset of the GT box relative
to ¢th proposal, v; indicate outputs of the regression branch of
R-CNN detection head. p; is the GT box label of the ith anchor,
p; is the output of the classification branch of R-CNN detection
head.

IV. EXPERIMENTS
A. Dataset

Based on the 2021 Gaofen Challenge, we conducted ex-
periments on the FAIRIM dataset [42]. FAIRIM dataset is a
large-scale dataset for fine-grained object detection in remote
sensing images. Images in the FAIR1M dataset are with a spatial
resolution ranging from 0.3 to 0.8 m. In FAIR1M dataset, there
are more than 40 000 remote sensing images with 1 million
instances from Gaofen satellites and Google Earth platform.
Each image is of the size in the range from 1000 x 1000 to 10000
x 10000 pixels and contains objects exhibiting a wide variety
of scales, orientations, and shapes. All images are annotated
with oriented bounding boxes and with respect to 5 categories
and 37 subcategories. The types of airplanes include Boeing
737 (737), Boeing 777 (777), Boeing 747 (747), Boeing 787
(787), Airbus A320 (A320), Airbus A220 (A220), Airbus A330
(A330), Airbus A350 (A350), COMAC C919 (C919), COMAC
ARJ21(ARJ21), and other-airplane (OA). There are eight spe-
cific categories for ships, including liquid cargo ships (LCS),
dry cargo ships (DCS), motorboat (MB), fishing boat (FB), pas-
senger ship (PS), tugboat (TB), engineering ship (ES), warship
(WS), and other-ship (OS). There are nine specific categories of
vehicles, including small car (SC), bus, cargo truck (CT), dump
truck (DT), van, trailer (TL), tractor (TR), excavator (EX), truck
tractor (TT), and other-vehicle (OV). Courts includes basketball
court (BC), tennis court (TC), football field (FF), baseball field
(BF), and roads includes intersection (IN), roundabout (RA),
bridge (BR).

B. Implement Details

We choose ResNet-50 [49] with FPN as the backbone network
for ablation experiments and hyperparameters of these models
are set to default values if not specified. We conduct the experi-
ments on a server with four RTX 3090 GPUs using a total batch
size of eight (two images per GPU) for training. We use a single
RTX 3090 GPU for inference. The experimental results are

produced on the mmdetection platform. The stochastic gradient
descent (SGD) optimizer is used in training. The initial learning
rate is set to 0.01 with the warming up for 500 iterations, and
the learning rate is decreased by a factor of 0.1 at each decay
step. The momentum and weight decay are set to 0.9 and 0.0001,
respectively. We train the models with 12 epochs for FAIRIM
dataset. The experimental environment was ubuntu 18.04, torch
1.7.0, and cuda 11.0 for the model training.

For FAIR1M dataset, we select 16 488 images as the training
set and 8137 images as the testing set. The test results are
submitted to the ISPRS Benchmark online validation platform.
We first convert the annotations to DOTA dataset [51] format.
Then, we crop the original images into patches with 800 x
800, the pixel overlap between two adjacent patches is 200.
With regard to multiscale training and testing, we first resize
the original images into three scales (0.5, 1.0, and 1.5) and
then crop them into 800 x 800 patches with the stride of 200.
We also apply random flipping and random rotation argument
method during training. At the testing stage, we conduct the
same data augmentation on the images to ensure consistency
between training and testing.

C. Evaluation Metric

In the task of object detection, each image may contain objects
of multiple categories. Therefore, a measure of detector perfor-
mance is needed to validate the localization and classification
capabilities. The average precision (AP) and mean average pre-
cision (mAP) are the most commonly used evaluation metrics.
AP is determined by recall and precision, where recall refers to
the ability of the model to find all objects, and precision refers to
the ability of the model to correctly identify the detected objects.
Each category uses a PR curve (P refers to precision and R refers
to recall) to calculate the AP. There are currently two versions of
the evaluation metric, PASCAL VOC2007 metrics and PASCAL
VOC2012 metrics. We evaluate the models at the testing set in
terms of PASCAL VOCO7 metrics.

D. Comparisons With State of the Art

We compare the proposed approach with other state-of-the-art
methods on FAIR 1M dataset. To ensure the independence of the
training, the results of these models are submitted to the online
validation site of ISPRS benchmark to evaluate performance.
Note that all methods adopt ResNet-50 as the backbone network,
our state-of-the-art experiments which adopt Swin-Transformer
(Swin-T) backbone network. As shown in Table I, our method
obtains 42.62% mAP, which outperforms the baseline model by
2.4% mAP. With limited data augmentation (i.e., multiscale data
and random rotation), our approach reaches 45.18% mAP. The
backbone of the model is replaced with Swin-T [52], our method
achieves 47.58% mAP, surpassing almost all recent state-of-the-
art detectors. Swin-T has a powerful feature extraction capabil-
ity and focuses on the global information in the feature map,
which effectively distinguishes the features between different
categories, so it has a higher performance in some categories. We
visualize some detection results in Fig. 6. It can also be observed



SONG et al.: FINE-GRAINED OBJECT DETECTION IN REMOTE SENSING IMAGES VIA ADAPTIVE LABEL ASSIGNMENT AND RB-FPN 79

COMPARISON OF THE PROPOSED APPROACH WITH THE STATE-OF-THE-X;3 IA]l:EPIROACH IN THE FAIRIM DATASET ON THE ISPRS BENCHMARK ONLINE
VALIDATION DATASET
Coarse Fine-Grained Faster Gliding Rol
RetinaNet [21] S?ANet [50] Baseline Ours Ours* Ours
Category Category R-CNN [5] Vertex [37] Trans. [18]
Backbone ResNet-50 R50 ResNet-50  ResNet-50  ResNet-50 | ResNet-50 ResNet-50 ResNet-50  Swin-T
mAP 27.6736 36.1215 33.6988 35.8624 38.2674 40.2257 42.6228 45.181  47.5753
FPS 20.8 20.1 19.2 18.4 18.2 18.3 19.0 19.0 9.5
Boeing737 35.0100 36.0389 36.0537 36.3221 35.8354 35.0958 39.1589 454473 43.9079
Boeing747 83.7229 84.4201 85.1864 82.6137 82.7387 84.4681 86.7031 86.7808  86.9736
Boeing777 12.6413 12.0861 12.4484 11.2893 12.8081 14.8808 16.1724 14.3606  20.0669
Boeing787 36.6836 52.3170 45.3512 48.6875 43.9033 48.8179 49.1561 50.4617  59.3205
Airplane C919 1.4367 5.8145 15.4492 24.4795 15.7698 17.7265 13.5979 25.3663  27.9089
A220 45.4363 46.3362 49.4960 50.0075 48.6819 46.2137 49.1840 48.7603  55.0686
A321 64.9481 67.7965 63.1642 65.2655 67.3503 67.4341 66.9068 69.3679  70.5426
A330 58.5229 66.3129 65.8944 69.9844 65.5620 69.0000 71.4291 70.8829  72.8709
A350 71.4517 72.3102 62.6917 65.1758 62.9163 68.6785 74.3388 742677  76.0312
ARJ21 3.5982 2.3962 31.2533 33.2417 33.6010 35.0287 28.9988 28.5255  36.8108
Passenger Ship 3.8265 6.9292 6.2424 8.9216 15.2002 16.1047 18.3813 21.9315 22.8528
Motorboat 22.0295 52.5785 44.3727 52.0388 58.0448 60.8346 68.4102 70.1976  73.1209
Fishing Boat 2.1218 7.3588 3.7101 5.1114 9.3686 9.4215 10.5547 12.3105  12.0027
Ship Tugboat 13.3417 16.0891 26.0481 28.4913 30.1663 35.4589 38.2720 34.1890  40.2088
Engineering Ship 9.1074 10.0499 6.8826 9.7272 10.8670 12.2476 11.8316 13.9355  14.0499
Liquid Cargo Ship 4.3720 22.8776 9.5006 15.6694 19.2780 20.0353 25.1245 27.5677  26.1598
Dry Cargo Ship 14.4898 37.8156 17.7820 26.7470 33.0237 35.4302 38.4079 39.0888  41.3548
Warship 3.8067 27.8149 6.3662 13.6678 24.9047 26.3109 34.717 35.9528  40.7024
Small Car 41.9096 65.1249 51.4416 49.5293 57.7326 58.1764 70.7494 75.2777  75.1231
Bus 5.5547 13.8452 21.0015 22.0365 31.2258 34.4643 36.1439 52.9540  51.3328
Cargo Truck 20.6871 38.9427 32.8857 36.6875 42.4586 44.7412 44.9402 523273  54.2142
Dump Truck 16.5438 41.7978 40.0400 39.5190 45.2607 47.8985 50.1990 58.9680  59.4030
Vehicle Van 34.0930 60.8419 45.9618 43.6492 54.4889 54.8711 70.7682 75.3280  75.8658
Trailer 0.3293 5.0758 7.8162 11.6542 15.5435 15.7067 16.7536 19.4164  21.4032
Tractor 0.3593 1.3878 3.7741 2.8967 3.5453 4.7180 1.6773 5.5233 2.7527
Excavator 0.5198 8.5986 9.2804 12.4875 12.7826 15.2655 17.2358 20.0231  23.4754
Truck Tractor 0.0112 0.5838 1.7096 3.6607 2.5933 1.5491 0.4875 1.7287 4.1933
Basketball Court 22.2838 35.4687 39.9219 39.8457 42.8666 48.909 54.588 53.7384  58.6447
Court Tennis Court 78.6226 78.5472 76.9730 76.9804 78.4010 80.3171 80.4906 80.7676  87.9879
Football Field 59.4606 62.0729 52.3577 50.7895 59.2985 58.2778 65.6882 62.3604  70.0206
Baseball Field 86.4601 88.8023 87.5563 86.8527 86.6019 88.7349 88.9209 89.0139  90.1002
Intersection 57.3259 55.6658 57.1100 58.5871 58.1779 60.1240 56.6370 62.7909  61.2788
Road Roundabout 20.3018 23.1784 22.2822 20.4891 19.3371 25.2627 20.3565 21.6325  27.2243
Bridge 9.8908 20.8564 7.7526 16.2131 20.7577 25.4700 32.1948 34.2490  34.5861

Ours denotes ORCNN with the proposed CSAsa and RB-FPN. * means multiscale training and testing.

that the proposed method can accurately detect densely arranged  E. Ablation Studies
objects. The proposed RB-FPN provides high-quality feature
maps that can effectively identify categories. The proposed CSA
provides more high-quality samples that accurately learn the
bounding box of the object.

Effectiveness of RB-FPN: We conduct ablation experiments
on the online verification of ISPRS Benchmark to evaluate
the effectiveness of the proposed RB-FPN. We use the Reti-
naNet with an orientation prediction in the regression branch
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TABLE II
PERFORMANCE OF RB-FPN WITH DIFFERENT BACKBONES AND MODELS
Method Backbone RB-FPN mAP
ResNet-50 27.67
. ResNet-50 v 28.92
RetinaNet-obb
ResNet-101 27.87
ResNet-101 v 29.60
ResNet-50 40.22
ResNet-50 v 42.23
ORCNN
ResNet-101 40.76
ResNet-101 v 42.57
TABLE III

EXPERIMENT OF DIFFERENT METHODS, IE., CSA AND RB-FPN IN FAIRIM
DATASET. WE CHOOSE ORCNN AS THE BASELINE

Baseline Different settings of model
RB-FPN v v
CSA v v
mAP 40.22 42.24 42.23 42.62
GFLOPs 134.51 134.81 134.51 134.85
Parameters 41.16 M 41.99 M 41.16 M 41.99 M
TABLE IV
PERFORMANCE OF LABEL ASSIGNMENT STRATEGY WITH DIFFERENT
METHODS
Modules Baseline Different methods
CA v
ORCNN-+ResNet-50+FPN
CSA v
mAP 40.22 41.46 42.23

(RetinaNet-obb) and ORCNN as our baseline method. First,
we directly adopt the official implementation to reproduce the
RetinaNet-obb and ORCNN, and then use RB-FPN to replace
FPN in the model. As shown in Table II, in ORCNN with
ResNet-50, using RB-FPN can achieve 42.23% mAP, about
2.01% mAP higher than the baseline method. With a stronger
backbone ResNet-101, RB-FPN further improves the perfor-
mance by 1.81% mAP. RB-FPN consistently increases the ac-
curacy of RetinaNet-obb and ORCNN with different backbones.
In addition, we compare our RB-FPN with traditional FPN
during training. Table III shows that the FLOPs increase by
0.3 G, but performance improved by 2.02% mAP, and the
results demonstrate a large effect gain with a few parameters
and computational load. As shown in Fig. 7, the feature maps of
each layer in FPN contain a large amount of noisy information
and do not effectively distinguish between background and
foreground information. The integrated feature map refined by
DKQP attention module has very high response on the objects,
which effectively eliminate the background information and en-
hance the semantic information. RB-FPN balances the semantic
information of each layer in the FPN and focuses on regions
that may contain objects, thus extracting features that are more
beneficial to the detector.

Effectiveness of CSA: We also perform ablation experiments
on the online verification of ISPRS Benchmark to evaluate the
effectiveness of our proposed CSA. CA (center aware) consider
only the priori information of the center distance between
anchor and GT box to adaptively adjust the IoU threshold,
CSA introduce the prior information of the aspect ratio of the
GT box based on the CA. Experimental results for different
label assignment strategies are shown in Table IV. CA label
assignment strategy achieves 41.46% mAP, about 1.2% mAP
higher than the baseline method. With CSA label assignment,
our method obtain 42.23% mAP, which brings about 2.01%
mAP gain over the baseline. Compared with the baseline, these
two label assignment strategies yield significant improvements
in performance, which also proves that the center distance and
the aspect ratio of GT box are important information for label
assignment. In addition, we compare our CSA scheme with the
Max-IoU scheme during training. As shown in Table III, CSA
label assignment strategy is not only an effective method with
high detection accuracy but also an efficient scheme in both
speed and parameters. As shown in Fig. 8, the visualization
results show that the baseline method tends to generate false
negatives or cannot accurately detect oriented objects [see Fig. 8
(1)], while our approach has better performance to those oriented
objects. We argue that adopting CSA label assignment makes it
easier for the network to select enough positive samples, thus
making the detector more robust. The experimental results show
that our CSA label assignment is effective in compensating for
potential samples, and the detector performance is effectively
improved due to the center distance and aspect ratio-guided IoU
thresholds.

V. CONCLUSION

In this article, we propose a refined and balanced feature pyra-
mid network (RB-FPN), which aims to eliminate the problem
of complex background information and enhance the semantic
feature information in the FPN. Specifically, RB-FPN focuses
more on potential object regions to enhance the semantic in-
formation and balance the feature maps in the FPN to provide
more pure information for subsequent classification tasks. And
the proposed CSA label assignment strategy fully utilize the
statistical characteristics of oriented objects. The CSA label
assignment strategy dynamically adjust the IoU threshold during
the training process, which alleviates the problem of angle
sensitivity of IoU for narrow oriented objects. When performing
sample selection, the CSA label assignment strategy allows
narrow oriented objects to retain more potential samples and
prevents high-quality samples from being filtered out. Moreover,
a comprehensive and extensive evaluation of FAIR1M dataset
indicates that our approach yields consistent and substantial
gains compared to the baseline approach.
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