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Abstract— Detecting oriented objects in optical remote sensing
images has been consistently challenging due to difficulties in
bounding boxes’ localization. The cascaded regression frame-
work, widely used for high-quality bounding box refinement, has
demonstrated effectiveness in this domain. However, our experi-
ments reveal a discontinuity issue in bounding box optimization
in cascaded regression framework. As a result, performance gain
is not guaranteed across all stages in this framework. In this
article, we propose a distribution discriminative detector (DDDet)
to address the above issues and enhance the optimization of
bounding boxes in oriented object detection. Specifically, a novel
conditional anchor refinement framework (CARF) is designed
to improve cascaded regression structure. CARF distinguishes
bounding boxes with different distributions, adaptively opti-
mizing them within the well-assigned regressors. Subsequently,
the aligned convolution module (ACM) is integrated into each
regressor, facilitating the continuous alignment between features
and refined anchors. Furthermore, the geometry-guided training
sample selection (GTSS) method is incorporated into CARF
to assign labels based on object shape priors. Experimental
results show that DDDet obtains state-of-the-art performance
on mainstream datasets for oriented object detection in remote
sensing image, which demonstrates the effectiveness of the
proposed method. Our method surpasses many current single-
stage detectors, two-stage detectors, and refine-stage detectors,
achieving the mAP of 79.41% on the DOTA dataset and 44.15%
on the FAIRIM dataset.

Index Terms— Anchor refinement, bounding box regression,
convolutional neural networks (CNNs), feature alignment, object
detection.

I. INTRODUCTION

ECENTLY, due to the rapid development of remote

sensing technology, the available remote sensing images
have increased dramatically. It is a very challenging and impor-
tant task to efficiently identify objects from massive remote
sensing images. In addition to directly serving object-oriented
applications, object recognition in remote sensing scenes has
a wide range of uses. For example, object-based contour
information can be used as auxiliary prior and contextual
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Frameworks of different object detectors.

information for remote sensing change detection [1], [2]. Some
previous methods use handcrafted features to extract objects
in images [3], [4], [5]. Since remote sensing images often
have complex scenes and variable object distributions, these
traditional methods suffer from low detection accuracy and
slow inference speed.

In the past decade, convolutional neural networks (CNNs)
have achieved great success in the field of computer vision.
The powerful local feature extraction capability of CNNs has
achieved excellent performance in various downstream vision
tasks such as image classification [6], object detection [7],
[8], and image segmentation [9]. Some works also introduce
CNN-based detectors into the object detection in remote
sensing images and bring great breakthroughs [10], [11], [12],
[13], [14], [15].

Currently, remote sensing object detectors are generally
divided into two categories: one-stage detectors and two-
stage detectors. As shown in Fig. 1, two-stage detectors
first generate a series of region of interest (Rol) through a
region proposal network (RPN). Then, more powerful features
are extracted within Rols for subsequent classification and
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Fig. 2.

Tlustration of the IoU changes before and after the bounding boxes go through different refinement stages. Input IoU is the IoU between input anchor

and the corresponding GT box. Output IoU denotes the IoU between output refined box and GT box. The visualization results show that in the later stages,
many anchors suffer severe performance degradation after regression. (a) First stage. (b) Second stage. (c) Third stage.

regression [16], [17]. One-stage detectors directly treat object
detection as a regression task and predict the objects in one
step [18], [19], [20]. The feature interpolation adopted in
two-stage detectors is helpful for robust feature extraction,
but it is time-consuming. Therefore, two-stage detectors have
better performance but slower running speed than one-stage
detectors.

For object detection in remote sensing images, one-stage
detectors have more potential and are more suitable for the
following reasons: 1) sizes of remote sensing images are
often very large, and therefore a fast detector is required to
achieve efficient object detection and 2) the density of objects
in remote sensing images is extremely uneven. Two-stage
detectors need to select a fixed number of Rols for prediction,
which is inflexible. Too few Rols may cause missed detection,
while too many Rols will cause excessive feature interpolation
time and slower inference speed. Recently, there have also
been some works that introduce the advantages of two-stage
detectors into a one-stage detectors for good performance,
which are called refined stage detectors [21], [22], [23], [24].
These methods use multiple regressions to continuously refine
the initially preset bounding boxes (also known as anchors),
achieving better detection accuracy at the cost of slightly
reduced running speed. Different intersection-over-union (IoU)
thresholds are adopted for different refinement stages to select
high-quality positive samples for cascaded regression.

The refined stage detectors achieve superior performance in
remote sensing object detection. However, we found that the
bounding boxes were not well-optimized in each refinement
stage. As shown in Fig. 2, we visualized the IoU changes
in anchors before and after regression in a refined stage
detector shown in Fig. 1. We used the common IoUs of 0.5,
0.6, and 0.7 as the thresholds to select positives for each
refinement stage. In the first stage, the initial preset anchors
are hard to align well with ground truth (GT) to achieve
IoU higher than 0.5 [see Fig. 2(a)]. Therefore, we select
the candidates with maximum IoUs as positives. Although
these samples have low relatively input IoU, they achieve
good localization results after anchor refinement. However,
in the second stage, high-quality refined anchors from the first
stage are not well-optimized. As shown in Fig. 2(b), many
anchors even suffer from drop in accuracy after refinement.
The performance degradation is even more exacerbated in the
third stage. Almost half of the positive samples have worse
localization performance after regression [see Fig. 2(c)]. The

above experimental phenomena widely exist in the refined
stage detectors, which limits the high-quality detections in
remote sensing images.

More specifically, the performance bottlenecks in refined
detectors can be attributed to the following aspects:

1) Imbalanced loss contribution across different stages.
Training samples in earlier stages are of lower quality
and larger prediction offsets, leading to higher losses.
The overall loss contribution will be dominated by
earlier stages, and the model tends to focus on samples
in these stages and neglects to optimize high-quality
samples in later stages.

Misalignment between IoU thresholds and bounding box
distributions. Within each stage, low-quality samples
slightly above the IoU threshold tend to incur larger
regression losses, hindering more accurate predictions.
Imbalanced number of positives across stages. Since the
IoU thresholds in the later stages are higher, positive
samples in later stages are very rare and potentially
cause the regressor to overfit.

Misalignment between anchors and features. In the
cascaded regression framework, the feature extraction
process does not adjust with continuous bounding box
optimization.

2)

3)

4)

In this article, we delve into the above problems and
proposed a distribution discriminative detector (DDDet) to
optimize bounding box regressions for better performance.
Specifically, a novel conditional anchor refinement framework
(CARF) is proposed to refine bounding boxes with different
distributions separately. Then, aligned convolution layers are
introduced to eliminate misalignment between features and
anchor regions to extract more informative features. Fur-
thermore, to fully use the potential high-quality samples,
we proposed a geometry-guided training sample selection
(GTSS) for high-quality training sample selection. Our DDDet
achieves state-of-the-art performance on multiple publicly
available remote sensing datasets, including HRSC2016 [25],
UCAS-ADO [26], DOTA [27], and FAIRIM [28]. In summary,
the contributions of this article are as follows.

1) We observed that the bounding boxes are not con-
tinuously optimized in current cascaded regression
framework and give a deep analysis on this phenomenon
with the experimental results. Then, a DDDet is designed
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to solve the issues to achieve substantial performance
gains.

2) We propose a novel CARF to improve cascaded regres-
sion structure. CARF distinguishes bounding boxes
with different distributions, adaptively optimizing them
within the well-assigned regressors.

3) A GTSS method is introduced into the CARF for
better training sample selection. GTSS selects potential
high-quality samples during the cascaded regression
process, which helps achieve more accurate predictions.

The rest of this article is organized as follows. Section II
introduces related work of object detection in remote sensing
images. Section III elaborates on our analysis and method.
Section IV shows experimental results and comparison with
other methods. Finally, conclusions are drawn in Section V.

II. RELATED WORK

A. Generic Object Detection

Object detection aims to detect objects from various classes
in images or videos. The introduction of CNNs leads to signifi-
cant improvements in detection accuracy [16], [17], [18], [19],
[29], [30], [31]. Object detectors can be broadly classified into
two categories: one-stage detectors and two-stage detectors.
Two-stage detectors first generate a series of candidate regions,
and then perform classification and bounding box regression
on regions to detect objects. Representatives of this class
include R-CNN [32] and its variants such as Fast R-CNN [16]
and Faster R-CNN [17]. In contrast, one-stage detectors aim to
directly classify and locate objects together in one regression
step. Representative works include YOLO [18] and SSD [29].
Two-stage detectors generally perform better in accuracy but
have slower inference speeds, while one-stage detectors are
suited for real-time scenarios.

To bridge the gap between one-stage and two-stage
detectors, cascaded refine-stage detectors are proposed to
incorporate bounding box refinement process to improve
detection accuracy without significantly compromising on
speed. RefineDet [33] used an anchor refinement module
(ARM) for coarse adjustment of anchors, followed by an
object detection module (ODM) that precisely classifies
objects and refines bounding box positions. R®Det [21] intro-
duced a feature refinement module that iteratively refines
features at multiple scales and adjusts the anchor positions,
leading to more accurate detection of objects. CFC-Net [22]
adopted cascaded optimization to iteratively refine object
localization by regressing boxes at multiple stages. Refine-
stage detectors offer a promising compromise between the
high speed of one-stage detectors and the high accuracy of
two-stage detectors.

Recently, transformer-based methods have achieved tremen-
dous success in the field of object detection. DETR [34] views
the object detection task as a set prediction problem, predicting
the set containing all the object boxes in one step. Swin-
Transformer [35] combines the self-attention mechanism of
transformers with the local perceptual abilities of CNNs for
efficient detection results. On this basis, Bae [36] introduced
deformable part region learning module to adjust flexibly in
response to its geometric transformations.
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B. Object Detection in Remote Sensing Images

Object detection in remote sensing images has been a
popular research topic for several decades. The increasing
demand for automatic object extraction from high-resolution
remote sensing images has spurred the growth of object detec-
tion algorithms. With the advent of CNNs, the performance
of object detection in remote sensing images has also been
significantly improved [14], [15], [23], [37], [38]. Remote
sensing images differ from natural images, and it is important
to consider the unique challenges posed by remote sensing
data.

First, remote sensing images are from a bird’s-eye view,
and the objects in the remote sensing images are often
multioriented. Therefore, recent works usually adopt oriented
bounding boxes (OBBs) to represent rotated objects in remote
sensing images [11], [22], [37], [39], [40]. For example,
Zand et al. [15] preset rotated anchors on the feature maps and
introduce angle prediction to regress rotated objects. Second,
regression of OBBs brings many optimization problems during
training process. Yang et al. [37] pointed out that periodicity
of angle would cause sudden increases in angle regression
loss. Ming et al. [23] suggested that the angle representation
redundancy leads to suboptimal angle regression. To resolve
these issues, a series of works based on angle classification
were proposed to avoid potential loss oscillation issue [11],
[40]. Moreover, there are also methods that approximate OBB
as Gaussian distributions for better optimization [41], [42].

Feature extraction is very important for multiorientation
remote sensing object detection. Large selective kernel net-
work (LSKNet) [38] dynamically adjusts its spatial receptive
field to incorporate unique prior knowledge and long-range
context for more accurate detection of objects in remote
sensing scenarios. ReDet [14] encodes rotation equivariance
and invariance by integrating rotation-equivariant networks for
feature extraction to adaptively extract features based on Rol
orientation, which improves orientation prediction.

To achieve high-accuracy detection performance, some
methods used two-stage detectors for detecting objects in
remote sensing images [14], [37]. However, two-stage methods
need to set a large number of Rols to ensure a high recall in
remote sensing scenes, which greatly reduces inference speed.
Therefore, one-stage detectors are very popular. Compared
with one-stage detectors, refine-stage detectors introduce only
a slight increase in inference overhead but can achieve higher
detection accuracy. S>ANet [13] aligned the rotated regional
features for oriented objects and incrementally refined the
detection of objects for precise localization. RDD [43] decou-
pled orientation from OBBs, and then performed multiple
regressions on horizontal anchors to obtain better priors for
accurate oriented object detection.

C. Label Assignment Strategy in Object Detection

The anchor-based methods densely preset a large number of
prior anchors on the feature maps. Then, the samples whose
IoU with the GT is larger than the set threshold (usually 0.5)
will be selected as positives for regression. This process is also
known as label assignment. Label assignment helps reduce
the search space for object detection algorithms and improve
the accuracy of object detection. Over the years, various label
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assignment strategies have been proposed and used in object
detection [10], [12], [22], [39], [44], [45], [46].

Some works suggested that the IoU between anchor and GT
is not consistent with the corresponding prediction accuracy
[22], [39]. For example, DAL [39] uses the IoU of sam-
ples before and after regression to comprehensively consider
the localization potential of anchors. ATSS [45] dynamically
selects high-quality positives based on statistical characteris-
tics of training samples.

There are also some works that specially design label
assignment strategies for remote sensing objects [10], [46].
For objects with large ratios (such as bridges and ships),
it is hard for anchors to achieve good spatial alignment with
them. SASM [46] designs dynamic IoU thresholds for objects
of different shapes to adaptively select positives, thereby
providing more samples to ensure sufficient learning process.
EARL [47] introduces an elliptical distribution-aided approach
to improve training sample selection method, focusing the
model on high-quality samples. Yu et al. [48] introduced a
soft label assignment mechanism to select arbitrary-oriented
training samples, focusing on the most representative items
for more stable training optimization. Zhang et al. [49] pro-
posed a task-collaborated detector to incorporate classification
and localization confidence into label assignment, and then
anchors with precise and consistent predictions are selected
as positives.

For two-stage detectors or refined stage detectors, different
IoU thresholds are used for each regression stages [22],
[33], [50]. Generally, the input proposals in later stages are
more accurate, so higher IoU thresholds are applied to select
high-quality positives for regression. Most of the existing label
assignment strategies are studied within separate regressors.
Unlike previous work, our framework takes into account the
bounding box distribution between different stages to make a
better design.

III. METHODOLOGY

In this section, we first dive into the bottleneck of cas-
caded regression framework. Then, a DDDet is proposed
for high-quality object detection in remote sensing images.
The modules in DDDet solve the above issues in cascaded
regression models from various aspects, leading to stable and
sustained performance improvements.

A. Bottleneck of Cascaded Regression Framework

The cascaded regression is a common framework used to
improve the accuracy of object detectors. It aims to progres-
sively refine the initial anchors through multiple regression
steps. Object detectors based on cascaded regression have
achieved state-of-the-art performance in many fields [21], [22],
[33], [50]. However, as shown in Fig. 2, we found through
experiments that cascaded regression in one-stage detectors
does not continuously optimize all the bounding boxes. Even
many high-quality boxes suffer performance degradation after
regression. The above issues limit the performance of this
framework, and the reasons can be attributed to the following
factors.
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Fig. 3. Illustration of the imbalanced loss contribution of positive samples
across stages (a) and within a certain stage (b). (a) Positives in earlier stages
are relatively inaccurate and therefore dominate the regression loss. (b) In each
stage, the losses of high-quality positives close to GT are relatively small,
so the model tends to optimize low-quality positives far away from GT.

1) Imbalanced Loss Contribution Across Different Stages:
In the cascaded regression framework, different IoU thresholds
are typically set to select positives for the corresponding
stages. Positive samples in later stages are more accurately
located than those in earlier stages, therefore leading to smaller
regression loss. In this case, the regression loss is dominated
by weak samples with lower accuracy in earlier stages. And
strong samples with more accurate localization are not further
optimized [see Fig. 3(a)]. As a result, the detector tends to
compensate for weak ones rather than optimize strong ones.
Some previous works balanced the loss contribution by adjust-
ing the weight for different stages [22], [50]. However, the
distribution of bounding boxes is dynamically changing, and
thus fixed loss weights are difficult to ensure balanced losses
across stages. For instance, increasing the loss contribution in
later stages by reweighting might result in poorer predictions
in earlier stages [see Fig. 6(b)]. Consequently, insufficient
high-quality positives may be propagated to later stages, which
does not guarantee an overall performance gain.

2) Misalignment Between loU Thresholds and Bounding
Box Distributions: Imbalanced loss contributions also occur
within each stage. As shown in Fig. 3(b), within a cer-
tain regression stage, low-quality positive samples near the
IoU threshold often have larger loss contributions. As a
result, the detector tends to optimize samples around the
set IoU threshold, while high-qualities near the GT are not
well-refined.

3) Imbalanced Number of Positives Across Stages: Dif-
ferent IoU thresholds lead to different numbers of available
positive samples. A higher IoU threshold for later stage often
results in fewer positives. Therefore, later stage is more likely
to suffer from overfitting. In addition, the difference in the
number of training samples also exacerbates the imbalanced
loss contribution across different stages.

4) Misalignment Between Anchors and Features: Multiple
steps of regression are based on the initial anchor features.
Anchors are shifted relative to the initial positions to achieve
localization results. However, initial features are used in all
subsequent regression stages. The same features cannot pro-
vide more accurate semantic information to achieve further
refinement.

B. Deformable Feature Alignment

Region-based feature extraction methods [16], [17], [22],
[51] are very common in two-stage detectors, but they are also
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Fig. 4. Structure of ACM. The sampling points are shifted according to the
anchor area to achieve alignment between features and bounding boxes.

time-consuming. One-stage detectors abandon these operations
to greatly improve inference speed. However, they there-
fore suffer from performance degradation due to inaccurate
features. In cascaded regression models, the misalignment
between features and training samples is even more severe.
As the bounding boxes are gradually optimized, they move
further away from the initial locations and features. Detecting
objects using the initial anchor features is obviously inaccurate
in this case.

To address the problem, we adopt the aligned convolution
(AlignConv) module in the cascaded regression framework.
The overview of AlignConv is shown in Fig. 4. AlignConv
aligns the sampling grid with the input feature map, which
helps better capture fine-grained spatial information. The
AlignConv consists of two steps: 1) using regular grid R to
sample according to the anchor area on input feature map and
2) performing a weighted summation of sampled values by
kernel weights W.

For a standard convolution operation, we have

Fou(Po) = Y W(pa) - Fin(po + pn) 1)
Pn€R

in which Fy, is the input feature map, and F,y is the corre-
sponding output feature map defined on 2 = {0,1,..., H —
1} x{0,1,..., W — 1}. py is the location from sampling grid
R = {(-1,—-1,(—1,0),...,(0,1), (1, 1}. po denotes the
location on the ouput features Foy, and pg € Q. W is the
weight value.

In AlignConv, the offsets based on the anchor position will
be applied to the regular grid R to determine the sampling
position, and therefore, (1) is as follows:

Fou(Po) = »_ W(pn) - Fin(Po +Pu + Apa) ()
Pn€R

where Ap, is the localization offset in offset field O. Given
the anchor box at the current location pg as (cx, cy, w, h, 6).
The rotated sampling field is denoted as follows:

1 1 T
Ribox = ((cx, cy)+ L (w. h) '1‘> -R7(0) 3)

where s is the stride of filters for downsampling, and k denotes
the kernel size of filters. R(0) is the rotation matrix denoted
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in [13]. Then, the offset field O is calculated as follows:

0= (Ribox — Po — Pn). “)
Pn€R

Equation (2) dynamically adjusts the sampling locations
according to the input anchor box, which helps align the
features within the anchor area. During the cascaded regression
process, the position of input anchor is continuously refined.
Aligned convolution extracts critical and effective features
based on refined boxes, which bridges the gap between fea-
tures and predicted boxes, achieving continuous and accurate
optimization for bounding box regression.

The previous region-based feature alignment opera-
tions [16], [51] are based on bilinear interpolation, and they are
very time-consuming. Large-scale remote sensing image inter-
pretation tasks require a fast and efficient solution. AlignConv
only calculates the offset of the sampling point to achieve
feature alignment to improve performance, which ensures
high-speed interpretation at the expense of relatively small
computational overhead. As shown in Fig. 6(c), AlignConv
achieves feature alignment, significantly enhancing the pre-
diction accuracy of samples in each stage of the cascaded
regression framework.

The application of aligned convolution has solved the mis-
alignment between anchors and features in current refined
stage detectors. By inserting aligned convolution in the cas-
caded bounding box regression framework, the regressors
dynamically select the feature extraction area based on the
optimized bounding box localization, therefore enhancing
feature representation and improving model robustness and
detection accuracy.

C. Conditional Anchor Refinement Framework

The cascaded regression framework has achieved signifi-
cant success in object detection in remote sensing imagery
[13], [21], [22]. However, current frameworks mostly directly
apply multilevel regressors to refine detections for continuous
performance gains. We suggest that these methods have not
taken into account the matching issue between samples from
different distributions and corresponding regressors.

For the rth regressor in the classic cascaded regression
framework, the bounding box regression process is represented
as follows:

b = fi—1(Xi—1, bi—1) (&)

where b,_; represents anchor boxes input to the regressor,
and b, is the predicted bounding box after regression. X is the
input feature, and f symbolizes the regression process of the
regressor.

As discussed in Section III-A, there are many problems in
the classic cascaded regression framework. To solve the above
issues, we propose a CARF. As shown in Fig. 5, in our CARF,
samples from different distributions (i.e., bounding boxes with
different localization accuracy) are separately refined toward
specific regressors. This ensures continuous optimization for
input boxes from two perspectives: 1) the features fed into
the regressors are well-aligned with the spatial positions of
input boxes and 2) each regressor optimizes only for samples
from a specific distribution, avoiding suboptimal refinement
issues caused by imbalanced loss contributions as discussed
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Fig. 5. Overview of the proposed method.

in Section III-A. In CARF, we achieve the matching between
sample distributions and regressors by controlling the gradient
flow during the backpropagation process, as indicated by the
arrows in Fig. 5. Specifically, the bounding boxes regression
process of the rth regressor in CARF is expressed as follows:

b, ={b" . fisi(Xi-1.b )} (6)

Different from the classic cascaded regression framework,
CAREF divides the refined positive samples from the previous
stage into two parts b™ and b~, which are defined as below

b, = {b_i | ToU, 1,2 > T*,}

- . @)
= {b | T2, <ToUM, 1, 8) < %}

where g represents the ground truth, and IoU(-) is used to
calculate the spatial overlap between two bounding boxes [52].
T~ and T are the IoU lower bound and IoU upper bound,
respectively, used to further divide positive samples into b*
and b™. Among them, b~ consists of samples specifically
optimized by the current stage regressor, while bt includes
high-quality samples with higher IoU, which are retained to
participate in the regression in the next stage.

The CARF framework divides samples of different qual-
ities, so that the regressor can better perform optimization
for samples of specific quality [as illustrated in Fig. 6(d)].
As samples with different qualities are assigned to regressors
for separate optimization, this achieves a decoupling between
the loss function and sample distribution. In addition, we can
simply adjust the loss contribution weights between regressors
to balance the regression loss. It is evident that the appropriate
selection of parameters for T~ and T determines the interval
of sample division, thereby affecting the regression accuracy
of the model. The following discussion will delve into the
considerations regarding parameter settings and detailed label
assignment strategy.

Most refined stage detectors suffer from unreasonable sam-
ple quality division, leading to imbalanced loss contribution

Middle qualities ;
T —— |OL

!

!

| | S \
| N | "0

| [ ! =
[ optimize I optimizeT

| !

!

‘ﬁ |
»| AlignConv [—

|
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Fig. 6. Comparison of several strategies on samples of different quality during
cascade regression process. (a) Classical cascaded regression framework.
(b) Weight of loss contribution at different stages. (¢) ACM and (d) proposed
CAREF. Red boxes represent low-quality positives, while blue boxes represent
high-quality positives. Samples above the bar indicate those that can be
effectively optimized, whereas those below the bar cannot achieve accurate
predictions.

across different stages. Our CARF differentiates samples of
different quality, optimizing samples with similar regression
potential using the same regressor. Consequently, the model
adjusts the loss contributions between different regressors,
alleviating imbalanced loss contribution across stages. More-
over, dynamic sample quality interval division also resolves
the misalignment between IoU thresholds and bounding box
distributions, ensuring each regressor can effectively optimize
all the assigned samples.

D. Geometry-Guided Training Sample Selection

Objects in remote sensing imagery often exhibit significant
variations in scale and aspect ratio. Predefined anchors often
struggle to effectively cover objects well, leading to insuffi-
cient positives for regression. To adaptively select high-quality
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Algorithm 1 Geometric-Guided Training Sample Selection

Input: 7 is the number of regressors. Ty is the initial threshold used
to select positive samples. O = {Oy, ..., O} is a list containing
the ToU between the sample and GT in each regression stage. G
is the set of ground-truth boxes.

QOutput: P = {P;,..., P} contains positives for each regressor.
B* = {B{,...,B} and B~ = {By,...,B,} are the divisions
of P, respectively, as defined in 7.

1: T = {To}

2: for i in [0, t — 1] do

3: v = Mean({O[i] | Oli] = Tp})

4 T,=05-(T[-11+v), T =T U{T} > Obtain IoU

thresholds in each stage;

5: end for

6: for i in [0, t — 1] do

7. for g in G do

8: ed =, /(A=) + (52)?

8 8

9: C < TopK(cd, k) > Calculate
shape guide center distance between GT and anchors, and
then select the top-k samples as candidates;

10: for ¢ in C do

11: o= IoU(cI, g)

12: r:MaX{w—z,ﬁ}, f(r):m;n(r)

13: TH=TLi+11-f(@r), T- =TIl f(r) > Compute

shape-guided IoU thresholds for each regressor;

14: if T- <o <T?" then

15: B7[i] = B7[i]U {c}

16: else if o > T+ then

17: Bf[i] = B[i]U {c}

18: end if

19: end for

20:  end for

21: if i == 0 then
22: Pli]l=PlilU B [i]

23: else

24: Plil=PLIUB[ilUB'i — 1]
25: end if

26: end for

27: return P, B~, BT

samples, we propose a geometric-guided training sample
selection (GTSS) strategy. GTSS incorporates geometric prior
information of objects into the training sample selection pro-
cess in two aspects: 1) IoU threshold and 2) label assignment.
The pseudocode of the GTSS is shown in Algorithm 1.

Next, we will introduce the IoU threshold selection at
different stages in CARF. As mentioned in Section III-C,
we use two IoU thresholds, T and T, to dynamically
distinguish positives at different stages. Considering that the
majority of anchors are negatives, we initially set a lower
bound Tj (set to 0.5) to filter out negatives. Subsequently,
we compute the mean of potential high-quality samples at
each stage as the partition criterion, as illustrated in line 3 in
Algorithm 1. Based on this criterion, a series of IoU thresholds
are calculated for different regressors, as shown in line 4 in
Algorithm 1 and Fig. 7. The IoU upper bound T+ of the
previous stage serves as the IoU lower bound 7~ for the
current stage.

Label assignment is subsequently carried out based on the
acquired IoU thresholds. Generally, a smaller distance between
the anchor center and the object center is more likely to
yield favorable spatial alignment effects [10], [45]. There-
fore, we incorporate the center distance as prior information
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Fig. 7. Illustration of IoU thresholds’ determination at different stages. 7p is
set to filter out negatives. v denotes the mean value of potential high-quality
samples for each regressor.

(@) (®)
Fig. 8. Comparison of label assignment strategies based on center distance
measurements (a) with shape guidance and (b) without shape guidance. Red
points are anchor points in images. It shows that shape priors enhance the
spatial overlap between anchor points and objects.

into the label assignment process. However, there are many
objects with large aspect ratios in remote sensing images. For
such objects, the traditional Euclidean distance metric may
erroneously regard low-quality anchors with centers located
outside the object boundaries as positives (as illustrated in
Fig. 8). Hence, we adopt a shape-guided center distance metric
(as described in Algorithm 1, line 8). This method dynamically
selects anchors with centers within the GT region, ensuring a
better coverage of the object region by the anchors.

During the training process, we initially compute the IoU
thresholds for each stage and then select the top k samples
based on shape-guided center distance. Subsequently, we mod-
ulate the IoU thresholds using the aspect ratio (as indicated in
Algorithm 1, line 13) to yield the final IoU thresholds, which
are used to determine positives at each regression stage.

The traditional topk-based label assignment strategies use
the Euclidean distance between anchor points and the center
of GT box for training sample selection. These methods treat
anchor points at the same distance from the object’s center as
equally qualified samples. In this case, as shown in Fig. 8(a),
many anchor points selected as positives actually do not fall
on the object region. Our GTSS method introduces the shape
prior of objects, adjusting the calculation of the center distance
using the aspect ratio of the target. It can be seen from
Fig. 8(b) that this approach places greater emphasis on anchor
points near the object area, therefore selecting samples with
higher spatial overlap with the object for accurate regression
processes.

To address the issue of imbalanced number of positives
across stages in the existing cascaded regression frameworks,
GTSS is proposed to optimize the training samples among
different regressors. First, by adopting shape-guided center
distance for label assignment, the number of low-quality
samples in earlier regressors is reduced, and samples with
localization potential are selected for training. Then, a dynamic
sample quality interval division strategy is designed to ensure
a consistent distribution of samples across intervals. By bal-
ancing the number of positives across stages and selecting
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high-quality samples, the detection performance is greatly
improved.

E. Loss Function

We used RetinaNet [53] as the baseline and extended it with
additional regression stages to achieve a cascaded RetinaNet.
The multitask loss is represented as follows:

L=1Lgs+ X\ Lreg- (8)

In (8), A is a hyperparameter to adjust the contribution of
different losses. Focal loss [53] was used as the classification
loss, as shown below

Lov= =33 (1= 5))7 102 ()

9
i=1 j=1
where
. i if pt =1
=1 b= (10)
— pj, otherwise.
pj? is the GT label for classification, while p; is the corre-

sponding prediction. ¢ is the number of regressors. N denotes
the number of anchors.

As discussed in Section III-A, positive samples in earlier
stages tend to exhibit larger deviations from the GT, leading
to more substantial loss contributions. To address variations in
loss contributions across different stages, we introduced IoU
loss to build an IoU-balanced loss for regression process. The
regression loss is presented below

N,

> (1 —ToU(b, b*))

j=1

t

1
Lreg = Z 1 —T-

i=1 !

(1)

where N, is the number of positive samples. 7 is the IoU
lower bound. b = (cx, ¢y, w, h, 0) is the predicted box, and
b* = (cxg, Cyg, Wy, hg, B,) is the corresponding GT box. IoU
loss is scale-invariant and normalizes the deviation between
anchors and GT, preventing the loss from being dominated
by low-quality positives. Furthermore, we fine-tuned the loss
contribution for each stage using the IoU lower bound. This
adaptive adjustment further reduces the contribution of earlier
stages to the loss, achieving a more balanced and stable
training process.

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed method on multiple public remote sensing datasets,
including HRSC2016 [25], UCAS-AOD [26], DOTA [27], and
FAIRIM [28]. Section IV-A will introduce the information of
these datasets. Section IV-B describes the experimental setup
and parameters. In Section IV-C, we compare the performance
of the proposed method with the existing state-of-the-art mod-
els. Finally, in Section IV-D, ablation studies are conducted to
verify the performance gains of the proposed framework.

A. Datasets

We explored diverse aerial image datasets in our extensive
experiments, including HRSC2016 [25], UCAS-AOD [26],
DOTA [27], and FAIRIM [28].
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The HRSC2016 dataset [25] is collected for high-resolution
remote sensing ship detection, including 1061 images with
sizes ranging from 300 x 300 to 1500 x 900 pixels. It is
partitioned into training, validation, and test sets containing
436, 181, and 444 images, respectively. UCAS-AOD [26]
is a dataset for aerial plane and car recognition, comprising
1510 images (1000 for planes and 510 for cars).

DOTA [27] stands out as a substantial dataset with
2806 aerial images and 188282 annotated instances across
15 categories, including plane (PL), baseball diamond (BD),
bridge (BR), ground track field (GTF), small vehicle (SV),
large vehicle (LV), ship (SH), tennis court (TC), basketball
court (BC), storage tank (ST), soccer ball field (SBF), round-
about (RA), harbor (HA), swimming pool (SP), and helicopter
(HC). Image sizes range from about 800 x 800 to 4,000 x
4000 pixels, and for our experiments, we cropped images into
800 x 800 patches with a stride of 200.

FAIRIM [28] is a benchmark for fine-grained object recog-
nition in aerial imagery, boasting over 1 million instances and
15000 images. Objects are annotated to 37 categories using
OBBs, and image widths vary from 1000 to 10000 pixels.
The objects in FAIRIM include Boeing 737, Boeing 777,
Boeing 747, Boeing 787, Airbus A320, Airbus A220, Airbus
A330, Airbus A350, COMAC C919, COMAC ARIJ21, other-
airplane, passenger ship, motorboat, fishing boat, tugboat,
engineering ship, liquid cargo ship, dry cargo ship, warship,
other-ship, small car, bus, cargo truck, dump truck, van, trailer,
tractor, truck tractor, excavator, other-vehicle, baseball field,
BC, football field, TC, roundabout, intersection, and bridge.

B. Implementation Settings

In our experiments, the baseline model is the cascaded
RetinaNet introduced in Section III-E. Ablation studies were
specifically conducted and DOTA datasets. We use two refine-
ment stages in both the baseline model and our framework. For
the baseline model, IoU thresholds used for training sample
selection are set to 0.4, 0.6, and 0.7 for three regression stages,
respectively. For our proposed CARF framework, the initial
IoU threshold for the first stage Ty is set to 0.4. We set
A = 1in(8) and k = 20 in GTSS for training sample selection.

In the comparison with the state-of-the-art methods on
public remote sensing datasets, we strive to ensure consistency
with widely adopted training strategies for a fair compar-
ison. The total training iterations were set to 36 epochs
for HRSC2016 and UCAS-AOD. For the larger-scale remote
sensing datasets DOTA and FAIR1M, models were trained for
12 epochs. The SGD optimizer was used for training, with
an initial learning rate set to 1 x 10 ~* and the learning rate
is divided by 10 at each decay step. Due to the large sizes
of images in DOTA and FAIRIM, we adopted a cropping
strategy, cropping the images into patches of 1024 x 1024 with
a stride of 512. The images in HRSC2016 and UCAS-AQOD are
resized to 800 x 800 for training and testing. All the models
are trained on four NVIDIA RTX 3090 GPUs, with a batch
size set to 8.

C. Comparison With State-of-the-Art

1) Main Results on HRSC2016: We conducted a per-
formance comparison between DDDet and the existing
state-of-the-art methods on the HRSC2016 dataset, with the
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TABLE I
COMPARISON WITH STATE-OF-THE-ARTS ON THE HRSC2016 DATASET

Methods RRD Rol Gliding OPLD DAL
[54] Trans. [55] Vertex [56] [57] [39]
mAP(%) 84.30 86.20 88.20 88.44  88.95
Methods CFC-Net GWD TIOE-Det GCL DDDet
[22] [41] [11] [58]  (ours)
mAP (%) 89.70 89.85 90.16 90.19  90.28
TABLE II

COMPARISON WITH STATE-OF-THE-ARTS ON THE UCAS-AOD DATASET

Methods FR-O Rol RIDet CFC-Net
[17]  Trans. [55] [23] [22]

mAP(%)  88.36 89.02 89.23  89.49
TIOE-Det DAL  S?ANet DDDet

Methods [39] [13]  (ours)
mAP (%)  89.49 89.87 89.99  90.03

experimental results presented in Table I. The HRSC2016
dataset comprises a substantial number of ships with large
aspect ratios, which are difficult to detect accurately. DDDet
achieves a notable mAP of 90.28% on this dataset. Some
detection results are depicted in Fig. 9. It illustrates that DDDet
achieves precise localization of objects with large aspect ratios.
The GTSS strategy adopted in DDDet helps adaptively select
high-quality samples based on object shape, which contributes
to the accurate detection of slender ship targets.

2) Main Results on UCAS-AOD: The UCAS-AOD dataset
includes lots of cars and airplanes. The object size in
UCAS-AOD is small. Therefore, the feature map contains
few effective features, which makes it hard to detect object
accurately. As shown in Table II, our approach achieved the
highest mAP of 90.03% among the compared methods. This
success can be attributed to the iterative refinement of region
features by the deformable alignment module during cascaded
regression. The continual location optimization contributes to a
robust feature representation, leading to superior performance
in subsequent classification and regression tasks.

3) Main Results on FAIRIM: FAIRIM is a recent remote
sensing dataset designed for fine-grained object recogni-
tion. In our study on FAIRIM, the experimental results are
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Fig. 10. Visualization of detections on the FAIRIM dataset.

presented in Table III. Our approach achieved the mAP of
44.15%, outperforming other comparative methods. Notably,
FAIRIM poses challenges with numerous visually similar
objects that are hard to distinguish. Visualization of detections
is shown in Fig. 10. It is evident that DDDet accurately
localizes objects and reports the correct categories of objects in
FAIRIM. Our method selects higher quality samples, thereby
achieving precise object detection results compared with the
baseline model.

4) Main Results on DOTA: DOTA is currently the most
widely used large-scale dataset for oriented object detection in
remote sensing images. The objects within the DOTA dataset
present notable challenges due to their extensive scale varia-
tions and changes in aspect ratios. The experimental results
are presented in Table IV. Our proposed DDDet achieves the
best performance with the mAP of 79.41%. Visualization of
some detections is shown in Fig. 11. As can be found in
Fig. 11, DDDet exhibits robust detection capabilities in diverse
and intricate scenarios. Examples include densely arranged
LVs (first row, first subplot), bridges with large aspect ratios
(second row, fourth subplot), and varying-sized ships and ports
(second row, second subplot).

D. Ablation Study

1) Evaluation of the Proposed Components in DDDet:
First, we conducted experiments on the hyperparameter A in
the loss function. As shown in Table V, the best performance is
achieved when A = 1.0. The reasonable selection of different
A has little impact on performance, indicating that the loss
function is relatively robust. Then, to validate the effectiveness
of the proposed modules in DDDet, we conducted compo-
nentwise ablation experiments on the DOTA, HRSC2016, and
UCAS-AOD datasets. The experimental results are presented
in Table VI. The baseline model, a cascaded RetinaNet,
achieved the mAP of 72.1% on the DOTA dataset. The
aligned convolutional module optimizes feature representation,
bridging the spatial gap between anchors and features, leading
to a performance improvement of 0.3 points. Next, integrat-
ing the CARF into the cascaded regression process further
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TABLE III
COMPARISON WITH OTHER METHODS ON THE FAIR 1M DATASET

The items with red and blue colors indicate the best and second-best results of each column, respectively. * denotes using multi-scale training and testing.

Method FCOS [59] DAL [39] RIDet [23] FR-O [17] CFC-Net [22] TIOE-Det [11] Gliding Vertex [56] Rol Trans. [55] DDDet (ours)
mAP(%) 23.70 29.00 31.58 33.70 34.31 35.16 35.86 38.27 44.15
Boeing 737 10.34 32.53 28.25 36.05 30.89 37.62 36.32 35.84 38.98
Boeing 747 43.54 74.39 80.62 85.19 83.87 86.71 82.61 82.74 83.83
Boeing 777 5.96 13.14 12.92 12.45 10.72 11.06 11.29 12.81 13.01
Boeing 787 13.67 39.91 45.28 45.35 38.60 46.32 48.69 43.90 40.10
C919 0.00 2.11 0.15 15.45 5.67 0.00 24.48 15.77 22.11
A220 11.71 41.32 39.89 49.50 42.44 48.75 50.01 48.68 48.73
A321 3.95 58.38 53.69 63.16 50.68 68.49 65.27 67.35 68.84
A330 15.03 44.59 62.80 65.89 55.13 69.98 69.98 65.56 63.09
A350 14.20 54.88 55.27 62.69 59.20 78.19 65.18 62.92 73.20
ARJ21 13.75 1.57 8.53 31.25 5.30 8.62 33.24 33.60 32.08
passenger ship 10.65 3.83 6.11 6.24 7.19 3.73 8.92 15.20 9.92
motorboat 46.21 53.04 55.20 44.37 63.38 58.45 52.04 58.04 69.95
fishing boat 9.59 5.71 549 3.71 8.72 5.12 5.11 9.37 11.99
tugboat 19.81 21.08 30.15 26.05 19.70 30.51 28.49 30.17 38.75
engineering ship 13.24 7.11 5.84 6.88 7.67 10.38 9.73 10.87 10.56
liquid cargo ship  12.92 12.05 17.21 9.50 21.23 5.56 15.67 19.28 30.06
dry cargo ship 35.08 28.41 29.58 17.78 30.54 18.71 26.75 33.02 40.24
warship 20.75 11.91 14.47 6.37 23.21 2.52 13.67 24.90 40.64
small car 42.56 48.05 52.73 51.44 62.43 65.89 49.53 57.73 73.45
bus 15.55 7.71 15.27 21.00 34.50 473 22.04 31.23 45.48
cargo truck 31.72 25.04 30.32 32.89 41.15 36.29 36.69 42.46 52.51
dump truck 23.90 22.82 29.50 40.04 42.18 41.31 39.52 45.26 55.87
van 34.59 43.26 45.01 45.96 51.65 65.89 43.65 54.49 74.13
trailer 12.14 2.48 3.82 7.82 11.41 0.53 11.65 15.54 16.64
tractor 1.07 1.03 0.05 3.77 1.69 0.18 2.90 3.55 4.18
excavator 7.90 5.06 5.03 9.28 10.26 9.83 12.49 12.78 20.22
truck tractor 1.09 0.55 0.53 1.71 0.71 0.10 3.66 2.59 2.88
basketball court 23.09 38.76 37.47 39.92 40.21 50.23 39.85 42.87 53.14
tennis court 74.76 75.37 77.78 76.97 79.41 80.23 76.98 78.40 88.86
football field 49.64 46.10 52.69 52.36 58.01 60.70 50.79 59.30 63.25
baseball field 82.90 84.66 85.63 87.56 84.34 88.57 86.85 86.60 88.21
intersection 55.14 44.06 51.41 57.11 51.98 65.07 58.59 58.18 60.22
roundabout 26.46 13.96 17.05 22.28 18.22 21.02 20.49 19.34 24.79
bridge 22.79 15.08 17.96 7.75 14.31 11.94 16.21 20.76 33.85

yielded a performance gain of 0.5 points. CARF optimally
allocates samples of different qualities to respective regressors,
continuously refining bounding boxes for better performance.
On this basis, the GTSS strategy further improved performance
by 0.3%. We propose that GTSS introduces object shape
priors into the label assignment process, which helps mine
more potential high-quality positives. Finally, the adoption
of IoU-balanced loss achieved adaptive balanced loss con-
tributions between different stages, leading to a performance
improvement of 0.2%. Stable performance gains can also be
achieved on HRSC2016 and UCAS-AOD, which proves the
effectiveness of the proposed components.

Our method is based on a refine-stage detector; it introduces
a minimal amount of parameters and computational overhead.
As shown in Table VII, our framework only brings about 0.3%
more parameters. When the size of input image is set to 800 x
800, our method leads to a decrease in inference speed by
1.1 frames/s. Overall, the computational cost introduced by
the proposed method is very small. DAL [39] is an advanced
one-stage detector, and Rol Transformer [55] is a two-stage

detector. Our method is a refine-stage method, and therefore,
the time cost of our method falls between those of one-stage
and two-stage detectors.

2) Evaluation of Effect of CARF: DDDet incorporates
CARF to address challenges in optimizing bounding boxes
during the cascaded regression process. We further conducted
experiments to demonstrate the applicability and robustness of
CAREF. The results are shown in Table VIII. We explored how
CARF improves the performance of cascaded regression detec-
tors with different numbers of refinement stages. The baseline
is a basic RetinaNet with APsq of 70.1%. Obviously, the model
with two refinement stages achieved a significant perfor-
mance improvement of 2.3 points. However, when optimizing
bounding boxes with three regressors, the performance only
increased by 0.2 points. It shows that the additional refinement
stages brought limited performance gains. We attribute this
to various issues discussed in Section III-A, which leads
to performance bottlenecks in cascaded regression detectors.
Following this, the introduction of CARF yielded notable
performance gains of 1.3%—1.0% for two- and three-regressor
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TABLE IV
PERFORMANCE COMPARISON WITH STATE-OF-THE-ARTS ON THE DOTA DATASET

. The items with red and blue colors indicate the best and second-best results of each column, respectively. ‘Ms’ means using multi-scale training and testing.

Methods Ms PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC  AP50(%)
CFC-Net [22] v 89.08 8041 5241 70.02 7628 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50
R3Det [21] v 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 7856 72.62 7647
2, DAL [39] 89.69 83.11 55.03 71.00 7830 81.90 88.46 90.89 8497 87.46 6441 6565 7686 72.09 6435 76.95
% SLA [12] v’ 88.33 84.67 48.78 73.34 7747 77.82 86.53 90.72 86.98 86.43 58.86 68.27 74.10 73.09 69.30 76.36
2 GWD [41] v 89.06 84.32 5533 77.53 76.95 70.28 83.95 89.75 84.51 86.06 73.47 67.77 72.60 7576 7417 7743
© RIDet [23] v 89.31 80.77 54.07 76.38 79.81 81.99 89.13 90.72 83.58 87.22 64.42 67.56 78.08 79.17 62.07 77.62
KLD [42] v’ 8891 85.23 53.64 81.23 78.20 76.99 84.58 89.50 86.84 86.38 71.69 68.06 7595 7223 7542 7832
TIOE-Det [11] v 89.76 85.23 56.32 76.17 80.17 85.58 88.41 90.81 8593 87.27 6832 70.32 6893 7833 6887 78.69
Rol Trans. [55] v 88.64 78.52 4344 7592 68.81 73.68 83.59 90.74 77.27 81.46 5839 53.54 62.83 5893 47.67 69.56
CAD-Net [60] v’ 87.80 8240 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 4840 6090 62.00 67.00 6220 69.90
SCRDet [37] v 8998 80.65 52.09 6836 6836 6032 72.41 90.85 87.94 86.86 6502 66.68 6625 6824 6521 72.61
g, Gliding Vertex [56] 89.64 85.00 5226 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 7294 70.86 57.32 75.02
m‘cls Mask OBB [61] v 89.56 85.95 5421 7290 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 7533
% CSL [40] V' 90.25 85.53 54.64 7531 7044 7351 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 6893  76.17
= OPLD [57] v’ 89.37 85.82 54.10 79.58 75.00 75.13 86.92 90.88 86.42 86.62 62.46 6841 7398 68.11 63.69 7643
AProNet [62] v’ 88.77 84.95 5527 7840 76.65 78.54 8845 90.83 86.56 87.01 65.62 70.29 7543 78.17 6728 78.16
DDDet(ours) v’ 89.55 85.88 57.93 80.38 79.56 83.16 89.13 90.85 86.94 87.40 68.51 71.30 78.41 79.29 62.84 79.41
BC ST SBF RA HA SP HC
Fig. 11. Visualization results of our method on the DOTA dataset.

detectors, respectively. The experimental results demonstrate
that our approach effectively enables the cascaded regression
detectors to progress through more stages.

In addition, we introduced AP7s metric in our experi-
ments to evaluate the performance of the proposed method in
high-precision oriented object detection. Additional refinement

stages could generate high-quality candidate boxes, thereby
continuously improving the performance of high-quality detec-
tion results. Our method further enhances performance on
this basis, significantly increasing AP;s. When the number
of refinement stages is 3, although AP;s cannot be fur-
ther optimized, our method can still achieve stable gains in
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TABLE V
IMPACT OF A IN THE LOSS FUNCTION ON DETECTION PERFORMANCE

A 0.1 0.5 1.0 2.0 5.0
mAP(%) | 71.6 729 734 733 728
TABLE VI
EFFECTS OF THE PROPOSED COMPONENTS ON REMOTE SENSING DATASET
Different Models
+ Aligned Conv. v v v v
+ CARF v v v
+ GTSS v v
+ IoU-balanced loss v
mAPpora (%) 721 724 729 732 734
mAPursc2016 (%) 86.9 87.5 88.7 89.1 89.8
mAPuycas-aop (%) 88.1 88.3 89.1 895 89.7
TABLE VII

EVALUATION OF THE PROPOSED METHOD ON MODEL PARAMETERS AND
INFERENCE SPEED

DAL Rol Trans. . Baseline
Method ‘ [39] [55] Baseline + Ours
Parameters(M) | 36.1 49.6 36.8 36.9
FPS 18.3 9.1 13.6 12.5
TABLE VIII

EVALUATION OF CARF ON THE DOTA DATASET

Num Stages 1 2 3
+ CARF X X v X v
AP50(%) 69.8 | 72.1 734 | 723 733
AP75(%) 423 | 437 451 | 441 458
TABLE IX

ANALYSIS OF THE IMPACT OF PARAMETER IN GTSS

k 1 5
mAP(%) | 635 712

10
73.1

20
73.2

50
73.0

high-precision detection by 0.7 points. Therefore, for different
application scenarios, the appropriate number of refinement
stages can be selected to meet the requirements of the actual
task.

3) Evaluation of Settings of GTSS: As demonstrated in
Table VI, GTSS has been proven to enhance the detection
accuracy in CARF. Furthermore, we explored the influence of
different values of k within GTSS. As shown in Table IX,
the best performance is 73.2%, which is achieved when
k = 20. Alternative values near k 20 do not lead to
significant performance drop. Therefore, we suggest that the
choice of k is robust. However, a very small k, such as
k = 1, leads to a sharp performance drop by 9.7 points.
It proves that selecting only a few positives for training limits
the utilization of potential high-quality samples, requiring a
longer training schedule for model convergence. Conversely,
adopting a large k would select many low-quality samples as
positives. This makes it challenging for the model to discern
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effective features for object recognition, therefore resulting in
performance degradation.

V. CONCLUSION

In this article, we identified a significant challenge in
current cascaded regression framework—bounding boxes lack
high-quality continuous optimization. Furthermore, this obser-
vation prompted an in-depth analysis of the phenomenon.
To address these limitations and achieve substantial perfor-
mance improvements, we introduced the DDDet. Specifically,
the innovative CARF is proposed to uniquely address the
challenge by distinguishing bounding boxes with different
distributions, adaptively optimizing them within the well-
assigned regressors. Next, the aligned convolution module
(ACM) is incorporated into each regressor, enabling the
continuous acquisition of high-quality features. Furthermore,
we integrated the GTSS method into CARF for adaptive label
assignment. Our DDDet achieves state-of-the-art performance
on multiple mainstream oriented object detection datasets. The
experimental results validate the superiority of the proposed
approach.

However, the proposed framework still has some limitations.
The continuous optimization of bounding box framework is
designed to meet the demands of high-accuracy detection
tasks, where the accuracy of object detection is more important
than inference speed. Although our method has improved
performance while ensuring inference speed, there is still room
for improvement by sacrificing speed advantages to further
increase detection accuracy. Compared with the bounding
box optimization of the refine-stage detectors, the Rol-based
bounding box regression in two-stage detectors, despite being
time-consuming, can better align features to achieve perfor-
mance improvements. Since Rol-based operations typically
output a fixed number of candidate boxes, the distribution
of the bounding boxes is different from those of detectors in
the refine-stage detectors. Therefore, future work will explore
the issue of uneven distribution of bounding boxes in the
cascaded regression framework of two-stage detectors, and
further improve high-quality detection performance.
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