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Towards Accurate Medical Image Segmentation
With Gradient-Optimized Dice Loss

Qi Ming and Xiaowu Xiao

Abstract—Medical image segmentation plays an important role
in medical diagnosis, and has received extensive attention in recent
years. A large number of convolutional neural network based
methods have been proposed to achieve accurate segmentation
results. Dice loss is the most popular loss function for medical image
segmentation tasks. However, we found that Dice loss suffers from
abnormal gradient changes, which causes the loss function to be un-
stable and difficult to converge. Therefore, we propose an gradient-
optimized Dice loss (GODC) to solve this problem. GODC corrects
the abnormal gradient changes in the segmentation loss, which
accelerates the model convergence and can achieve better segmen-
tation performance. Next, we propose a lateral feature alignment
module (LFAM). LFAM adopts deformable convolutional network
to align the features of different layers on the shortcut connections
of U-Net to improve the segmentation performance. Finally, our
method achieves state-of-the-art results on the LiTS dataset as well
as our collected pancreatic tumor datasets.

Index Terms—Medical image segmentation, dice loss, convol-
utional neural network, gradient descent algorithm.

I. INTRODUCTION

THE liver and pancreas play very important roles in the
metabolism of the human body. Therefore, efficient diag-

nosis of liver tumors and pancreatic tumors is very important
for medical image analysis. The rise of computerized tomog-
raphy (CT) technology provides an effective way for tumor
segmentation, which has been widely used in medical diagnosis.
However, tumor lesions and surrounding tissues are extremely
similar and difficult to distinguish. Many previous hand-crafted
segmentation methods cannot achieve accurate medical image
segmentation performance [1], [2], [3].

In recent years, a large number of methods based on con-
volutional neural networks have emerged, which have greatly
improved the accuracy of medical image segmentation [4], [5],
[6]. The powerful ability of CNN to automatically extract fea-
tures endows the model with better segmentation performance.
However, CNN-based segmentation methods also bring many
problems.
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Currently the most popular loss function for segmentation is
Dice loss [7], [8], [9], [10], [11]. However, we found that Dice
loss suffers from abnormal gradient changes during the training
process. Firstly, the gradients of the Dice loss increase as the
model converges, which leads to oscillations in the loss curve and
hinders further model convergence. Secondly, for large lesions,
Dice loss produces smaller gradients. As a result, it produces a
small step for parameter updation and therefore leads to slower
convergence for large lesions.

U-Net [12] is a widely used model for medical image seg-
mentation and achieves high-quality segmentation performance.
Many of the existing advanced segmentation models are based
on the U-Net framework [13], [14], [15]. U-Net employs down-
sampling and upsampling operations to extract symmetric fea-
ture maps. The corresponding features are then fused using a
lateral connection path for subsequent segmentation prediction.
However, we suggest that the feature maps obtained after down-
sampling and upsampling cannot be directly aligned with the
original feature maps. Therefore, it is not feasible to directly
concatenate different features. The semantic gap between these
feature maps would make the fused feature with confusing
semantic information.

Another problem stems from the available medical image
data. Although CNN-based models are able to extract high-
quality features to improve segmentation accuracy, a sufficient
amount of data is still required to feed CNN models to achieve
high segmentation performance. However, the available medical
image data for liver and pancreas is very small, which makes
it impossible to build a complete dataset for identification of
various lesions. Insufficient data for different special cases will
hinder model training and convergence.

To address the above issues, we optimize the existing segmen-
tation framework. First, we design a gradient-optimized Dice
loss (GODC) to eliminate the gradient instability problem of the
classical Dice loss during training. GODC eliminates abnormal
gradient changes in the classical Dice loss, thereby speeding
up the training process and ensuring better segmentation per-
formance. Then, the variability convolution is applied to the
shortcut connection of U-Net to achieve feature alignment of
feature maps and alleviate the semantic gap between different
features.

Moreover, pancreatic cancer is one of the major problems
that threatens human health and urgently needs to be addressed.
Fast and accurate diagnosis of early pancreatic tumors helps to
reduce the risk of cancer by early intervention. Medical image
segmentation techniques based on deep learning can make a
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Fig. 1. The overall framework of the proposed method. GODC denotes the
gradient-optimized Dice loss.

big difference in this field. For this purpose, we collected a
pancreatic tumor segmentation dataset for the development of
this field.

In summary, the contributions in this paper are as follows:
� We observe undesirable gradient changes of classical Dice

loss during the training process. On this basis, a gradient-
optimized Dice loss is proposed to achieve better segmen-
tation performance.

� To bridge the semantic gap in feature fusion for U-Net
based frameworks, we propose a lateral feature alignment
module to spatially align features for further fusion process.
In this way, the extracted features contain richer semantic
information, which is beneficial to the subsequent segmen-
tations.

� A pancreatic tumor segmentation dataset is constructed
to further help address pancreatic cancer diagnosis. The
proposed method also achieves superior performance on
it.

II. METHODOLOGY

Dice loss is a very popular loss function in medical image seg-
mentation. Given the input imageI,V = {1, 2, ..., n} represents
all pixels in I. We denote G as the pixel-wise ground-truth (GT)
labels for I. G ∈ {0, 1}V , in which 0 denotes the background
pixesl and 1 for GT mask. Then, P is the output probabilities
of the network for pixel-wise image segmentation task, and
P = {p0, p1, . . ., pn}. Next, the intersection and union between
predicted mask and the GT mask is as follows:{

I(P,G) =
∑

v∈V Pv ∗Gv,
U(P,G) =

∑
v∈V Pv +Gv − Pv ∗Gv,

(1)

where I(P,G) means the overlap between two regions and
U(P,G) is the union area of them. The Dice similarity coef-
ficient is organized as follows:

DC(P,G) =
2 · I(P,G)

I(P,G) + U(P,G)
(2)

The result in (2) is similar to a popular metric IoU in object
detection, which is as follows:

IoU(P,G) =
I(P,G)

U(P,G)
. (3)

IoU, as a common indicator for object detection [16], [17], [18],
can directly reflect the spatial overlap between two regions. IoU
is also usually used as an evaluation metric for segmentation
tasks [19], [20], [21].

Obviously, we can get the relation between the Dice and IoU
as follows:

DC(P,G) =
2 · IoU(P,G)

1 + IoU(P,G)
(4)

In order to analyze the gradient change of the Dice loss, we
can first analyze the gradient change of IoU w.r.t. the prediction
results during the training process [21]. The gradient of the IoU
item w.r.t. the network outputs is as follows:

∂IoU

∂Pv
=

∂

∂Pv

[
I

U

]

=
1

U2
·
(
U · ∂I

∂Pv
− I · ∂U

∂Pv

)

=
1

U2
· [U · Yv − I · (1− Yv)] , (5)

in which I and U are intersection and union in (1), respectively.
The general Dice loss is as follows:

LDC = 1−DC(P,G). (6)

Combined (4), (5), and (6), we get the gradient of the Dice loss
w.r.t. the predictions as follows:

∂LDC

∂Pv
= −∂DC

∂Pv

= − ∂DC

∂IoU
· ∂IoU
∂Pv

= −2 · Yv − IoU · (1− Yv)

(1 + IoU)2 · U (7)

The result of (7) show that the gradient of Dice loss is inversely
proportional to the union area between the predicted mask and
GT mask. It leads to the following problems: (1). Once the
training model predicts a large mask initially, a small gradient
would be obtained and it is difficult to quickly optimize the
model parameters. As a result, the model would suffer from
slow convergence. (2) As the optimization proceeds, a small GT
mask produces a relatively small union area, which would lead
to a large gradient. It’s hard to refine the prediction mask next
to achieve accurate segmentation results in this case.

Therefore, we expect Dice loss to achieve a scale-invariant
optimization process to avoid the suboptimal training process
caused by the above issues. Then the gradient scaling strategy is
applied to construct the Gradient-Optimized Dice Loss (GODC)
as follows:

LDC = (1−DC(P,G)) · ||U ||∗. (8)

||U ||∗ is the norm of the union vector normalized within a
batch. The modification of GCOD is small based on Dice loss,
but the performance gain is substantial. In (I), we achieve a
scale-independent optimization process by adaptively scaling
gradients with the union area. The gradient of the loss function
could also be positively related to the object scales if we multiply
(||U ||∗)2 on Dice loss. Although it helps to further speed up
model convergence, we suggest that the unstable mask predic-
tions of the segmentation task in the early stages of training may
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Fig. 2. Illustration of the lateral feature alignment module. Deformable con-
volutions are applied in lateral connections to achieve feature alignment between
the two features to be fused.

cause severe loss oscillations. Hence the design in (1) achieves
a better trade-off between performance and convergence speed.

Most of the current medical image segmentation frameworks
are inherited from UNet. These methods firstly use downsam-
pling modules to obtain small-scale feature maps, and then up-
sample and restore large-scale feature maps for subsequent fine-
grained segmentation tasks [22], [23]. However, the padding
operations introduce quantization error, which would cause the
feature map to be spatially biased from the features of the
original image. Besides, fusion of not aligned features would
make the semantic information of the near region ambiguous
and hard to distinguish. It degrades the performance especially
for small-scale tumor regions. Hence, subsequent segmentation
based on misaligned features would inevitably lead to inaccurate
segmentation results.

We observed that the translation error caused by padding is
not too large, and we only need to fine-tune the position of the
feature maps during the feature fusion procedure. Therefore, a
lateral feature alignment module (LFAM) is proposed. LFAM
introduces deformable convolution blocks [24] to achieve the
adaptive fusion of corresponding features at the same scales.
The structure is shown in the Fig. 2. Unlike traditional convolu-
tional kernels, deformable convolutional kernels use learnable
convolutional layers to locate sampling points. It helps to solve
the feature misalignment problem in lateral connections.

III. EXPERIMENTS AND ANALYSIS

A. Datasets

We evaluate the performance of the proposed method on
two datasets. The MICCAI 2017 Liver Tumor Segmentation
(LiTS) Challenge [25] dataset contains 201 CT scans, including
131 scans for training and 70 scans for testing. The data and
segmentations are provided by various clinical sites around the
world. Further, we collected a pancreatic tumor segmentation
dataset to assist in the fast and accurate diagnosis of pancreatic

cancer. The datasets were collected from different institutions,
and the patient’s consent is also obtained for academic research.
It contains a total of 174 scans. Specifically, the dataset is divided
into 140 scans as a training set and 34 scans for testing.

B. Evaluate Metric

We adopted the most commonly used Dice coefficient to
evaluate the performance of the models, which is as follows:

Dice =
2 · TP

2TP + FN + FP
(9)

in which TP, FP and FN are the number of pixels in the predicted
mask that are true positives, false positives and false negatives,
respectively. The Dice coefficient is similar to the IoU metric
as we discussed in previous section. A higher dice coefficient
means the more spatial overlap between the prediction mask and
the GT label, and therefore the prediction is more accurate. Also,
we adopt precision and recall to evaluate the models, which are
defined as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Precision is the ratio of true positive sample among all positive
prediction. Recall reveals the accuracy of positive predictions
among all true positives.

C. Implementation Details

Our implementation is based on the open source framework
PyTorch [27]. In the data augmentation process, we set the
random scaling factor in [0.7, 1.3] and the random translation
ranges in [0.8, 1.2]. Images are randomly rotated by 90◦. We
train the model on RTX 2080 Ti GPU. Five-fold cross-validation
is adopted during training. We use the Adam optimizer to train
the model with the learning rate set to 2×10−4. The model is
trained for 1000 epochs with a batchsize set to 2. All ablation
experiments are performed on our collected pancreatic tumor
segmentation dataset. Finally, we compare with other methods
on the public LiTS dataset.

D. Ablation Study

We conducted extensive ablation experiments on the collected
pancreatic tumor segmentation dataset to prove the effectiveness
of the proposed method. The modules we propose are all plug-
gable structures, which can be easily applied to existing models
to achieve performance improvements. Next, we will conduct
detailed experiments on each module.

1) Effectiveness of Gradient-Optimized Dice Loss: GODC
solves the abnormal gradient change of Dice loss, and therefore
it helps to speed up the model convergence and improve the
segmentation performance. GODC improves the performance
of U-Net by 1.3% with only slight changes to the original Dice
loss. To further prove the generality of the proposed method,
we also conduct experiments on other models. The results in
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TABLE I
EVALUATION OF GRADIENT-OPTIMIZED DICE LOSS ON DIFFERENT MODELS ON

PANCREATIC TUMOR DATASET

TABLE II
EVALUATION OF LATERAL FEATURE ALIGNMENT MODULE (LFAM) ON

PANCREATIC TUMOR DATASET

Table I show that with the application of GODC, the Dice
index of Residual U-Net [26] is improved by 0.9 points in the
pancreatic tumor segmentation task. GODC helps to improve
the performance of existing segmentation frameworks with little
additional computational overhead.

2) Effectiveness of Lateral Feature Alignment Module: Lat-
eral connections are essential in UNet-based models. Our pro-
posed LFAM effectively alleviates the misalignment between
fusion features and achieve performance improvement. LFAM
bridges feature maps at different scales, which is similar to
the multi-scale feature pyramid network (FPN) in object de-
tection [28]. In FPN, it is reported that the convolutional kernels
with shared parameters between feature maps of different scales
can enhance the generalization ability of the model. Therefore
we also tried shared deformable convolutional kernels in LFAM.
Experiments are performed on U-Net and Residual U-Net.
The results are shown in Table II. The performance achieved
by the shared convolutional kernels is inferior to independent
convolutional kernels. We suggest that shared convolutional
kernels expect to extract more robust feature representations
from features of different scales to achieve scale invariance.
On the one hand, the shared parameters make it difficult for
the convolutional kernels to converge well. On the other hand,
the scale-sensitive position offset provided by LFAM is better to
solve the spatial misalignment between feature maps. Therefore,
we adopt independent convolutions in LFAM. Finally, LFAM
improves U-Net and Residual U-Net by 0.7% and 0.4%, respec-
tively.

Fig. 3. Segmentation results of our method on the pancreatic tumor dataset.
The first row is the GT annotation and the second row is the segmentation mask
of our method.

TABLE III
COMPARISON WITH OTHER ADVANCED METHODS ON THE LITS LIVER

SEGMENTATION DATASET

Some visualization results are shown in Fig. 3. We visualize
images with tumor regions of different sizes and shapes and
their corresponding segmentation results. It can be seen that our
model can accurately segment the tumor area.

E. Comparison With Other Methods

We conduct experiments on the publicly available LiTS liver
segmentation dataset and report the comparison results with
other advanced methods in Table III. Our method achieves
the best performance with Dice index of 95.32%, precision of
96.79%, and recall of 96.01%. We did not perform extensive
modification of the baseline model, but the segmentation perfor-
mance surpassed many recent models. Furthermore, notice that
our proposed method is very flexible and requires only minor
adjustments to existing models. Therefore, applying our method
to other models can also achieve continuous improvement.

IV. CONCLUSION

In this paper, we first analyze the gradient change of the
current popular Dice loss. Based on the observation, a gradient-
optimized Dice (GODC) loss is proposed to achieve fast and
stable model convergence. Next, we introduce lateral feature
alignment module (LFAM) in the lateral connection and fea-
ture fusion steps. LFAM employs deformable convolutions to
achieve spatial alignment of the features to be fused, which helps
to eliminate the semantic gap between the misaligned feature
maps. Finally, the superior performance on the LiTS dataset and
the collected pancreatic cancer dataset prove the effectiveness
of our method.
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