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Abstract

Intersection-over-Union (IoU) is the most popular metric
to evaluate regression performance in 3D object detection.
Recently, there are also some methods applying IoU to the
optimization of 3D bounding box regression. However,
we demonstrate through experiments and mathematical
proof that the 3D IoU loss suffers from abnormal gradient
w.r.t. angular error and object scale, which further leads
to slow convergence and suboptimal regression process,
respectively. In this paper, we propose a Gradient-
Corrected IoU (GCIoU) loss to achieve fast and accurate
3D bounding box regression. Specifically, a gradient
correction strategy is designed to endow 3D IoU loss
with a reasonable gradient. It ensures that the model
converges quickly in the early stage of training, and helps
to achieve fine-grained refinement of bounding boxes in
the later stage. To solve suboptimal regression of 3D IoU
loss for objects at different scales, we introduce a gradient
rescaling strategy to adaptively optimize the step size.
Finally, we integrate GCIoU Loss into multiple models
to achieve stable performance gains and faster model
convergence. Experiments on KITTI dataset demonstrate
superiority of the proposed method. The code is available
at https://github.com/ming71/GCIoU-loss.

1. Introduction
Autonomous driving has received extensive attention in

recent years due to its broad application scenarios. 3D ob-
ject detection is a very important and promising topic of
autonomous driving. Currently, LiDAR is the most com-
monly used sensor to obtain representations of object in the
real world for 3D object detection [4,21,33,35,40,44]. The
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Oscillation of 3D IoU loss

(a) Gradient anomalies in angle convergence. 

(b) Different convergence for multi-scale objects. 

Figure 1. Visualization of some problems in current 3D IoU loss.
(a) Gradient changes of 3D IoU loss w.r.t. angular error. Gradients
are small under large angular errors. (b) Convergence of bounding
boxes of different scales under supervision of 3D IoU loss. The
optimization for multi-scale objects is different. IoU Loss con-
verges slower for large objects.

sparse point cloud data from LiDAR scanners can provide
depth information of objects, which is critical for accurate
3D object detection.

Intersection-over-Union (IoU) is the most popular metric
used to measure the detection accuracy and evaluate per-
formance of the model. But in the training phase, current
detectors usually use the Lnorm-based loss function to op-
timize the bounding box regression [6, 24, 34, 43, 50]. The
inconsistency between training loss and evaluation metric
would lead to a misaligned optimization process. Specifi-
cally, a lower loss value does not guarantee better detection
performance (higher IoU), which has also been discussed in
some previous work [25,26,38,41,48,49]. For example, Yu
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et al. [41] suggested out that IoU, as an evaluation metric in
2D object detection, can naturally be used in loss function
to achieve consistency between training and testing. Zhou
et al. [49] extended the case to 3D object detection and de-
signed 3D IoU loss for autonomous driving.

IoU-based loss and its variants are studied and widely
used in 2D object detection [9, 16–18, 25, 36, 48]. There are
some work to introduce 3D IoU into 3D object detection
and achieve performance improvement [12, 13, 15, 32, 49].
However, the IoU loss in 3D object detection is quite differ-
ent from that in 2D object detection. Firstly, the 3D bound-
ing boxes have higher degree of freedom than 2D horizontal
bounding boxes, which makes the IoU calculation between
two 3D bounding boxes very complicated. Secondly, the
IoU-based losses generally converges slowly. The larger
search space and higher degrees-of-freedom of 3D bound-
ing box parameters further increases the difficulty of model
convergence. There are also some previous work devoted
to the improvements on 3D IoU loss [26, 47]. For in-
stance, Rotation-robust Intersection over Union (RIoU) [47]
uses a projection operation to estimate the intersection area
to simplify the calculation of 3D IoU, which is both ro-
bust and feasible for back-propagation. Recently, Rotation-
Decoupled IoU (RDIoU) [26] decouples the rotation vari-
able to solve the negative coupling effect of rotation on the
3D IoU.

However, most of 3D IoU based losses directly apply
3D IoU or use its variants to supervise bounding box re-
gression, and do not give an in-depth analyze to the loss
gradient changes during training. As shown in Fig. 1(a),
we found that the 3D IoU loss suffers from abnormal gra-
dient changes during training. Firstly, when the angular er-
ror between predicted box and the ground-truth (GT) box is
large, 3D IoU loss produces small gradients for optimiza-
tion, which leads to a very slow convergence. Secondly, as
the model converges, the angular error decreases, but there
is a period where the gradient increases abnormally. In this
case, the angle prediction is difficult to be refined, and it
even leads to the loss oscillation (see Fig. 1(a)). Further-
more, IoU is generally considered to be scale-invariant, but
we observed that the optimization of the 3D IoU loss per-
forms differently for objects of different scales. As shown
in Fig. 1(b), for large scale objects, more iterations are re-
quired to make the bounding box regressed well.

In this paper, we give detailed discussion of gradient
changes of 3D IoU loss from both experimental results
and mathematical analysis. Then, we propose a gradient-
correction IoU (GCIoU) loss to solve the mentioned prob-
lems. GCIoU loss contains two parts, gradient correction
strategy and gradient rescaling strategy. Gradient correction
strategy corrects the gradient of 3D IoU loss w.r.t. angu-
lar error to ensure smooth angle convergence. The GCIoU
loss is then obtained by integrating the expected gradients.

Further, to optimize the convergence of objects of different
scales, we use a gradient rescaling strategy to modify the
gradient of IoU loss w.r.t. scale to adaptively update the
variables. Experimental results on KITTI dataset demon-
strate the superiority of our method.

The main contributions of this paper are summarized as
follows:

• We found the abnormal gradient changes of 3D IoU
loss w.r.t. angular error during the optimization pro-
cess through experiments, and further gave analysis
and proof for it.

• We observed different performances of the 3D IoU loss
for the optimization of objects of different scales, and
concluded that it is also caused by abnormal gradients
via mathematical analysis.

• The gradient-correction IoU (GCIoU) loss is proposed
to alleviate abnormal gradients and accelerate conver-
gence of 3D IoU based loss. The parameter update
strategy is then adjusted to adaptively optimize multi-
scale objects with different steps.

2. Related Work
2.1. LiDAR-Based 3D Object Detection

Existing LiDAR-based 3D object detection mainly pro-
cesses 3D point clouds through point-based [28, 30, 39],
voxel-based [3, 7, 37, 45] or projection-based [4, 13] ap-
proaches. To generate 3D proposals directly from raw Li-
DAR point clouds in a bottom-up manner, PointRCNN [28]
leverages the PointNet++ [23] network as an encoder that
learns point cloud representations. STD [39] further de-
signs spherical anchors to reasonably seed anchors for each
LiDAR point. It then collects LiDAR points within spher-
ical anchors for 3D object classification and regression.
However, these PointNet-based 3D detectors rely on hand-
designed parameters for frequent point sampling and group-
ing operations. Point-GNN [30] instead explores graph rep-
resentations of LiDAR point clouds for compact encoding
of position and spatial relationship information. Recently,
sparse convolutions on 3D LiDAR point clouds [37] have
show powerful feature extraction capabilities and reduced
the computational cost by ignoring non-empty voxels. [7]
[45] look into encoding the input 3D points with stacked
sparse convolutional backbone networks. SA-SSD [7] uti-
lizes an auxiliary network that combines point-level fore-
ground segmentation with center estimation to guide the
sparse voxel features to be aware of 3D structural informa-
tion. CIA-SSD [45] presents an IoU-aware confidence re-
finement function to make the classification confidence and
3D bounding box regression more consistent. Among the
recent two-stage 3D detection methods, Voxel R-CNN [3]
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aggregates fine-grained spatial information from encoded
voxel features via a voxel RoI refinement module. More-
over, PV-RCNN [27] integrates both the PointNet-based
point features and 3D sparse voxel convolutional features to
capture rich contextual information for 3D proposals. Some
other projection-based work [4, 13] projects LiDAR point
clouds to range image via spherical projection [13]. In their
method, point-wise feature learning can be exploited with
efficient 2D convolutions on compact range image repre-
sentations.

2.2. 3D Intersection-over-Union(IoU) Based Loss

Considering the misalignment between the refined
bounding boxes from the second stage of the 3D detector
and the estimated IoUs, Li et al. [12] leverages a 3D RoI
alignment module to generate RoI-Aligned features that are
incorporated into the corner embeddings for accurate po-
sition encoding. In RangeIoUDet [13], a point-based IoU
and a 3D hybrid GIoU loss are adopted to improve point-
wise feature learning and provide quality geometry infor-
mation. It further leverages a 3D hybrid GIoU loss to im-
prove localization accuracy and provide reasonable evalu-
ation for predicted 3D Boxes. Zhou et al. [49] presents
a unified IoU computation framework for rotated 2D and
3D object detectors. Also, [47] utilizes a projection opera-
tion to estimate the interaction region of IoUs and alleviate
the convex uncertainty in the rotation computation. While
the introduction of 3D IoU brings some improvements to
3D object detection, it is still sensitive to rotated bound-
ing boxes, which may lead to instability in training stage.
Most recently, RDIoU [26] introduces a rotation decoupling
method to simplify the complicated interactions of box re-
gression while improving the training stability of rotated 3D
box estimation.

IoU loss in 3D object detection is still in its infancy and
suffers from slow convergence. Current IoU-based methods
have initially optimized and accelerated the 3D IoU compu-
tation. However, these methods do not examine in depth the
specific performance of IoU loss on the 3D envelope regres-
sion process and some optimization issues from a gradient
perspective.

3. Analysis of 3D IoU Loss

3.1. Preliminaries

In the 3D object detection task, given the prediction
box P = {xp, yp, zp, wp, hp, lp, θp} and GT box G =
{xt, yt, zt, wt, ht, lt, θt}. (x, y) denotes center point of box.
{w, h, l, θ} are the width, length, height, and orientation of
box. The IoU between the two boxes is as follows:

IoU(P ,G) =
I(P ,G)

U(P ,G)
=

P ∩G

∥P ∥+ ∥G∥ − P ∩G
(1)

(a) Convergence of different variables
during regression. 

(b) Visual demo of 3D box
regression. 

anchor predictionGT

20th 70th

170th 270th

Figure 2. Illustration of the convergence process for different vari-
ables under 3D IoU supervision. (a) shows the convergence speed
of different variables of 3D box. ‘Center’ refers to the center point
deviation, ‘Shape’ is the volume offset between two boxes, and
‘Angle’ is orientation error. (b) visualizes the regression steps of
the boxes under IoU supervision.

where I denotes the overlap area between P and G, and
U is the union of the two boxes. IoU intuitively reflects
the spatial overlap of two geometries, and therefore it is the
most commonly used metric to evaluate the localization ac-
curacy.

Meanwhile, IoU can also be directly used as a loss func-
tion to supervise bounding box regression. The simplest
IoU loss is as follows:

LIoU (P ,G) = 1− IoU(P ,G) (2)

Also, there is another popular form of negative logarithm
IoU loss, which is organized as follows:

LlnIoU (P ,G) = −ln(IoU(P ,G)) (3)

In general 2D object detection task, horizontal bounding
boxes are usually used to represent objects, and therefore
IoU can be easily obtained. However, the calculation of in-
tersection between two 3D bounding boxes is quite compli-
cated. A variety of cases need to be considered separately,
and it is difficult to give a specific calculation formula. In
this paper, we suggest that only two cases which hinder the
model convergence need to be considered. One is the case
where the GT box is surrounded by the prediction box, and
the other is the case where the two boxes are center-aligned.
The reason is as follows.

We observed via experiments that the center points are
relatively easy to be regressed. Shown in Fig. 2(a) is the
convergence curve of model supervised by 3D IoU loss. We
preset a series of anchors around the GT boxes, and then de-
sign a tiny model to regress the targets under the supervision
of 3D IoU loss. A visualization example of regression pro-
cess is given in Fig. 2(b). At the beginning of training, the
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IoU loss forces the model to predict large-scale predictions
to cover GT boxes and then the center point is accurately
regressed. In this case, we need to guarantee a quick con-
vergence of the IoU to speed up the regression process. Af-
ter that, shape convergence is relatively slow compared with
center point prediction, while angle regression even suffers
from severe oscillations. Therefore, we only pay attention
to optimization of shape and angle when center point is well
located. To summarize, the calculation of 3D IoU can there-
fore be simplified into the following two cases: (a)GT box
and predicted box are center aligned (b) GT is inside the
predicted box.

In the first case, for a given prediction box
P = {xp, yp, zp, wp, hp, lp, θp} and its GT box
G = {xt, yt, zt, wt, ht, lt, θt}, we can get the IoU
based on the geometric relationship as follows: I =

hthpl

sinθ
,

U = wthtlt + wphplp − I,
(4)

where θ = |θp − θt| denotes the angle deviation, and
l = min{lt, lp}. Note that Eq. (4) only holds when the in-
tersection is a parallelogram. Specifically, θ ∈ [θ0,

π
2 ], θ0 is

the boundary conditions and can be calculated from the ge-
ometric relationship. As shown in Fig. 1(a), the gradient of
3D IoU loss w.r.t. angular error would converge well when
the angular error is small. Therefore, we only consider the
abnormal situations with θ ∈ [θ0,

π
2 ].

For the another case where GT box is inside the predicted
box, elements in IoU can be represented as follows:{

I = wthtlt,

U = wphplp.
(5)

3.2. Analysis of Gradient of 3D IoU Loss

First, we get the partial derivatives of the IoU as follows:

∂IoU

∂x
=

∂( I
U )

∂x
= (

∂I

∂x
· U − ∂U

∂x
· I)/U2, (6)

where x is the variable in the 3D bounding box, such
xp, wp. Next, we will analyze the gradients of IoU loss for
the above two cases and demonstrate the experimental re-
sults in Fig. 1.

3.2.1 Gradient w.r.t. Angular Error

We first consider the center-aligned case, and calculate the
partial derivatives of I and U w.r.t. the angular error θ as
follows: 

∂I

∂θ
= −hthpl · cosθ

sin2θ
= −I · cot θ,

∂U

∂θ
= −∂I

∂θ
= I · cot θ.

(7)

For the common linear IoU loss in Eq. (2), combining
Eq. (6) with Eq. (7), we obtain the gradient of the IoU loss
w.r.t. angular error as follows:

∂LIoU

∂θ
= IoU(1 + IoU) · cot θ. (8)

As the model converges, the IoU ↑ and the angle error
θ ↓, therefore cot θ ↑. In the end, the gradient increases
abnormally, which would lead to inaccurate angle predic-
tions. Further, when θ is large, the gradient is very small,
and therefore the regression loss converges very slowly in
the early stage of training. The above analysis is consistent
with the experimental results in Fig. 1(a), and accounts for
the slow convergence of the IoU loss.

For the non-linear IoU loss in Eq. (3), we also obtain the
gradient as follows:

∂LlnIoU

∂θ
=

1

IoU
· ∂LIoU

∂θ
= (1 + IoU) · cot θ. (9)

It can be seen that the same issues also exist in the non-
linear IoU loss. But the gradient growth of non-linear IoU
loss is slower than that of linear IoU loss. Therefore, in
general non-linear IoU loss achieves relatively better per-
formance than linear one.

Similarly, for the GT contained case, the partial deriva-
tives of I and U w.r.t. the angular error θ can also obtained
via Eq. (5): ∂I

∂θ = ∂U
∂θ = 0. Therefore, we get ∂LlnIoU

∂θ = 0.
It means that the angle is not well optimized when the pre-
diction box is expanding its area to find the GT box. There-
fore, the IoU loss optimizes different variables of the pre-
dictions in different stages, which would lead to slow con-
vergence speed.

In summary, current regression loss only ensures that
the loss value decreases as error of parameter estimation
decreases, ignoring that inappropriate changes in gradients
also hinder the network convergence. Therefore, we sug-
gest that the gradient of IoU loss w.r.t. angular error should
also decrease as the angular error decreases.

3.2.2 Gradient w.r.t. Scale

Similar to the previous steps, we first consider the center-
aligned case represented by Eq. (4). The scale of 3D bound-
ing box contains three variables w, h, l. We denote that
w, h, l are proportional to a scale factor s, and therefore
I, U ∝ s3, and IoU ∝ s0. In this section, we give the
results directly to avoid confusion caused by too many for-
mulas.

Under the center-aligned case, we obtain the gradient of
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linear IoU loss w.r.t. the scale as follows:

∂LIoU

∂hp
= −IoU · Vt

Uhp
,

∂LIoU

∂wp
= IoU · hplp

U
.

∂LIoU

∂lp
=


IoU· Vt

Ulp
, l = lp,

−IoU·wphp

U
, l = lt,

(10)

in which Vt = wthtlt is the volume of GT box, and Vt ∝
s3. Obviously, we know that |∂LIoU

∂hp
| ∝ 1

s , |∂LIoU

∂wp
| ∝ 1

s ,

and |∂LIoU

∂lp
| ∝ 1

s . As a result, for large-scale objects, IoU
loss produces small gradients to optimize the shape of the
predictions, which would lead to slow convergence. For
small-scale objects, the model applies large gradients to cor-
rect shape errors, which would lead to poor refinement of
small bounding boxes and even loss oscillation. These re-
sults are consistent with the experimental observations in
Fig. 1,

The same conclusion also holds for non-linear IoU loss.
It is known that ∂LlnIoU

x = 1
IoU · ∂LIoU

x in Eq. (9). Com-
bining Eq. (10), we still get |∂LlnIoU

∂hp
|, |∂LlnIoU

∂wp
|, and

|∂LlnIoU

∂lp
| ∝ 1

s . Hence, the non-linear IoU loss suffers from
suboptimal regression of bounding boxes of different scales.

Under the GT box contained case, the gradients of linear
IoU loss are as follows:

∂LIoU

∂hp
= IoU · wplp

U
,

∂LIoU

∂wp
= IoU · hplp

U
.

∂LIoU

∂lp
= IoU · wphp

U

(11)

In this case, there is still the issue of different optimization
of linear IoU loss for objects of different scales. Similarly,
it is easy to prove that non-linear IoU loss also suffers from
this problem.

4. Methodology
4.1. Gradient Correction for Angle Optimization

As discussed earlier, the negative logarithm IoU loss per-
forms better than the linear IoU loss, so modifications are
made based on the negative logarithm IoU loss. As shown
in Eq. (9), the gradient anomaly of LlnIoU mainly comes
from two parts:

Prob. 1 Abnormal gradient growth as the angle con-
verges.

Prob. 2 When the angular error is large, the small gradi-
ent is not conducive to the angle convergence.

To solve the above problems, we correct the LlnIoU and
obtain the gradient-corrected IoU (GCIoU) loss as follows:

LGCIoU = −ln(IoU) · f(θ) + g(θ), (12)

where f(θ) and g(θ) are the correction function and will be
described below. Next, the first derivative of LGCIoU w.r.t.
θ can be obtained as follows:

∂LGCIoU

∂θ
= (1+IoU) · cot θ · f(θ)

− ln(IoU) · f(θ)′ + g′(θ).
(13)

As suggested before, we need to ensure that ∂LGCIoU

∂θ is
monotonically increasing w.r.t. θ, that is, ∂2LGCIoU

∂θ2 > 0 .
Hence, the second derivative is to be considered:

∂2LGCIoU

∂θ2
= 2(1 + IoU) cot θ·︸ ︷︷ ︸

B(θ)

f(θ)′ −ln(IoU)︸ ︷︷ ︸
C(θ)

·f(θ)′′

− (1 + IoU)(IoU · cot2 θ + csc2 θ)︸ ︷︷ ︸
A(θ)

·f(θ) + g′′(θ).

(14)

For the original negative logarithm IoU loss in Eq. (3),
f(θ) = 1, f(θ)′ = f(θ)′′ = 0, and g(θ) = 0. Therefore,
∂2LlnIoU

∂θ2 < 0, the model suffers from abnormal gradients.
Firstly, we set g(θ) = 0 in Eq. (12) to determine f(θ).

It’s known that LGCIoU > 0, and thus f(θ) > 0. Note that
the targets of angle regression is not equivalent to that of the
IoU optimization. Therefore, f(0) ̸= 0 is required, other-
wise the model cannot be further optimized when the angle
is well regressed. Next, as angular error decreases, LGCIoU

should also decreases to ensure model convergence. There-
fore, ∂LGCIoU

∂θ > 0. The straightforward candidates are
functions that satisfy f(θ)′ > 0.

In Eq. (14), as θ ↓ and IoU ↑, A(θ) ↑, B(θ) ↑, and
C(θ) ↓. Hence C(θ) is stable as model converges. For
simplicity, we assume that f(θ)′′ > 0. If ∂2LGCIoU

∂θ2 > 0,
we obtain a stronger consttrain from Eq. (14):

f(θ)′

f(θ)
>

IoU · cos2 θ + 1

2 sin 2θ
. (15)

Obviously, we cannot achieve the goal by simply choosing
f(θ) that satisfies the above requirements. When θ → 0 or
θ → π

2 , there are always critical value that make Eq. (15)
no longer hold. However, a suitable f(θ) can make this
critical theta larger or smaller, thereby expanding the ideal
optimization interval that meets the requirements. There is
a suitable candidate that satisfies the above requirements:
f(θ) = eP (θ). P (θ) can be θ, θ2, etc. Then, GCIoU is as
follows:

LGCIoU = −ln(IoU) · eP (θ) + g(θ). (16)
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For example, when P (θ) = αθ , f(θ)
′

f(θ) = α. Therefore we
can adjust the hyperparameter α to control gradients varia-
tion during regression. In our experiments, we finally select
P (θ) = θα for better performance.

f(θ) is designed to alleviate the abnormal gradient in-
crease in Prob. 1, while g(θ) is used to increase the gradient
to speed up the convergence and solve the Prob. 2. Rela-
tively, g(θ) helps to boost the gradients when the angle error
is large, and thus accelerates the convergence speed. There-
fore, g(θ) is an monotonically increasing function w.r.t θ to
provide larger gradients at the beginning of training. Also,
g(θ) should satisfy some requirements: (1) g(θ) > 0 to
avoid negative loss values, (2) g(θ)′ > 0 to ensure that angle
convergence guarantees the loss decreases. There are many
candidates for g(θ). For example, we take g(θ) = tan θ in
Eq. (16) to get the final LGCIoU as follows:

LGCIoU = −ln(IoU) · eθ
α

+ tan θ, (17)

The combination of f(θ) and g(θ) ensures that the gra-
dient of 3D IoU loss changes adaptively during regression
process thereby accelerating network convergence. Fur-
thermore, formally the GCIoU loss simply adds two ad-
ditional angular constraints to the initial negative log IoU
loss. It would therefore not affect the intersection calcula-
tion, and helps steadily improve performance for all cases
of 3D bounding box predictions.

4.2. Gradient Rescaling for Scale Optimization

IoU is scale-invariant and can evaluate the localization
performance of objects at different scales. However, we
found that the optimization process of the IoU loss is sen-
sitive to scale. The GCIoU loss in Eq. (17) only optimizes
the angle gradients and does not introduce shape informa-
tion, so it cannot correct the suboptimal shape optimization
of IoU loss. Hence ∂LGCIoU

∂s ∝ 1
s .

Introducing shape information directly on the basis of
Eq. (17) would change the gradient of the loss w.r.t. angular
error. There is previous work that adjusts the variable up-
date strategy during the regression process [22]. Similarly,
we introduce gradient rescaling strategy to adjust gradients
as follows:

st+1 = st − η · ∂LGCIoU

∂s
· U

2
3 , (18)

where U is the union between prediction and GT box. st de-
notes the shape of current predicted 3D bounding box (w,h
or l), and st+1 stands for the variables after updating. Since
U ∝ s3, U

2
3 ∝ s2, hence ∂LGCIoU

∂s · U
2
3 ∝ s. The gradient

rescaling strategy in Eq. (18) achieves adaptive scale opti-
mization without affecting backpropagation. In this case,
the parameter updating step is automatically adjusted ac-
cording to size of object. Specifically, the model applies

GC
GR

Car (IoU=0.7)
f(θ) g(θ) Easy Moderate Hard

1 88.61 78.12 77.27
2 ✓ 89.21 78.56 78.22
3 ✓ 88.98 78.53 77.75
4 ✓ ✓ 89.54 78.81 78.39
5 ✓ 89.16 78.54 78.01
6 ✓ ✓ ✓ 89.85 80.03 78.66

Table 1. Component-wise experiments of the proposed GCIoU
loss on KITTI val set. ‘GC’ denotes the gradient correction strat-
egy for angle regression. ‘GR’ is the gradient rescaling strategy
for shape regression. We report the average precisions of 11 sam-
pling recall points.

a larger step size to adjust large objects, while producing
small optimization steps for small objects.

5. Experiments

5.1. Implementation Details

Dataset. Experiments are conducted to evaluate the pro-
posed method on KITTI dataset. KITTI [5] is the most
commonly used benchmark for 3D object detection, which
contains 7481 LiDAR images for training and 7518 images
for testing. Following the common dataset division strat-
egy [2,11], training images are further divided into the train-
ing set and the validation set, containing 3712 images and
3769 images respectively.
Preprocessing. For a fair comparison with existing meth-
ods, all LiDAR point clouds are cropped according to the
x-axis (0,70.4)m, y-axis (-40,40)m and z-axis (-3,1)m. The
voxel size of raw LiDAR point cloud during voxelization
is set to (0.05,0.05,0.1)m. For data augmentation during
the training phase, random flipping along the X-axis is em-
ployed, together with global scaling of the input point cloud
with a random scaling factor sampled from [0.95, 1.05].
Global rotation of the raw LiDAR point cloud around the
Z-axis at a random angle is also adopted, where the random
angle is sampled from [−π

4 ,
π
4 ].

Training details. All experiments are conducted based on
the OpenPCDet [31] toolbox. Following the work [26],
we use the CT-Stack as the backbone model. Ablation
experiments are trained on the train set from scratch, and
then evaluated on the val set with 11 recall positions. We
adopt the ADAM optimizer [10] with the learning rate set
to 0.003. We train the model for 40 epochs with a batch
size of 4 on NVIDIA 3090 GPU. Main results are collected
from the test set, and then submitted to the server for per-
formance evaluation and comparison with current state-of-
the-art methods.
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P (θ) α
Car (IoU=0.7)

Easy Moderate Hard

-ln(IoU) 0 — 88.61 78.12 77.27

GCIoU

αθ

1 88.86 78.19 77.22
2 89.06 78.29 77.50
3 89.19 78.43 77.62

θα

1 89.38 78.62 77.52
2 89.54 78.81 78.39
3 89.15 78.33 77.41
5 87.26 77.35 75.89

Table 2. Performance evaluation of different P (θ) in our method.

5.2. Ablation Study

Evaluation of Gradient Correction Strategy. We perform
ablation experiments on different modules of GCIoU loss as
shown in Tab. 1. The baseline model trained with negative
log IoU loss achieves the moderate AP of 78.12%. Gradient
correction strategy consistently improves the performance,
and achieves the moderate AP of 78.81%. Further, we con-
duct experiments to analyze the performance of functions
for gradient correction in Tab. 2 and Tab. 3, respectively.

Experimental results in Tab. 2 show that performance
gains are achieved for almost all of the different forms of
P (θ) in GCIoU loss. Specifically, performance of P2(θ) =
θα is better than that of P1(θ) = αθ as α=1 or α=2. Since
P ′

1

P1
= α, while P ′

2

P2
= αθα−1. In Eq. 15, P ′

2

P2
dynamically

adjusts thereby obtaining a larger interval of ideal gradient
changes. Note that when α=5, moderate AP performance
drops by 0.77 points. We suggest that a large α causes a
sharp increase in the contribution of angular error in GCIoU
loss. As a result, the model places too much emphasis on
orientation regression and thus neglects centroid and shape
prediction. The best performance is achieved when α=2,
angle loss contribution and the gradient correction are well
balanced in this case.

Further we conducted experiments to find the suitable
g(θ). Results in Tab. 3 show that the best moderate AP
is 78.53%, which is obtained when g(θ) = eθ − 1 . When
g1(θ) = θ, g1(θ)′ = 1, which increases the gradient equally
for all angular errors. Gradients are not well corrected, and
thus the performance gain is negligible. For g2(θ) = tan θ,
g2(θ)

′ = sec2 θ, it provides large gradients to accelerate
model convergence at large angular errors. However, as
θ → π

2 , the gradients is too large and tends to make the
regression process unstable. Finally, g(θ) = eθ − 1 is a
good trade-off and brings stable performance gains.
Evaluation of Gradient Rescaling Strategy. The results of
the ablation experiments on the gradient rescaling strategy
are shown in Tab. 1. Gradient rescaling strategy is a conve-

g(θ)
Car (IoU=0.7)

Easy Moderate Hard

-ln(IoU) — 88.61 78.12 77.27

GCIoU
θ 88.69 78.23 77.32

tan θ 88.86 78.36 76.91
eθ − 1 88.98 78.53 77.75

Table 3. Performance evaluation of different g(θ) in our method.

Methods GCIoU
Car (IoU=0.7)

Easy Moderate Hard

PointPillars [11]
88.95 77.35 76.11

✓ 89.17 80.19 78.95

SECOND [37]
88.91 78.85 77.62

✓ 89.21 82.41 78.81

SECOND-IoU [37]
89.28 79.21 78.36

✓ 89.26 83.33 79.41

Table 4. Performance improvements on different backbones.

nient plug-and-play module that directly adjusts the param-
eter update process. The application of gradient rescaling
strategy improves the moderate AP by 0.42 points over the
baseline IoU loss. Combined with the gradient correction
strategy, we can obtain further performance improvements.
Since the objects in the KITTI dataset do not have very ob-
vious scale variation, so the performance gains are relatively
small compared to the gradient correction strategy.
Evaluation of Different Backbones. We have also con-
ducted experiments on different backbones to demonstrate
the effectiveness of GCIoU loss. Experimental results are
shown in Tab. 4. Experiments are conducted on three popu-
lar one-stage models PointPillars [11], SECOND [37], and
SECOND-IoU [37]. SECOND-IoU is based on SECOND
and extra IoU prediction is applied to achieve the consis-
tent classification and regression predictions. Our method
achieves significant performance gains on different back-
bone networks. For example, GCIoU loss improves moder-
ate AP by 3.56 points on the KITTI val set on the basis of
SECOND.
Comparison with Different IoU-based Losses. We fur-
ther compare GCIoU loss with other IoU-based losses for
3D object detection. For a fair comparison, we repro-
duce the compared methods in OpenPCDet toolbox with
the same backbone network. GIoU [25] and DIoU [48]are
designed for 2D object detection, and we apply them to
3D object detection to improve performance. RIoU [47]
adopts projections to approximate IoU between two 3D
boxes, which suffers from inaccurate IoU calculation, and
thus its hard AP even drops by 0.79 points. ODIoU [46] in-
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Reg. Losses Ref.
Car (IoU=0.7)

Easy Moderate Hard

1-IoU [49] 3DV2019 88.53 77.63 77.05
-ln(IoU) [49] 3DV2019 88.61 78.12 77.27

RIoU [47] ECCV2020 88.42 77.81 76.26
GIoU [25] CVPR2019 88.68 78.35 77.41
DIOU [48] AAAI2020 89.16 78.78 77.95

ODIOU [46] CVPR2021 89.32 78.92 78.01
RDIOU [26] ECCV2022 89.71 79.61 78.40

GCIoU(ours) — 89.85 80.03 78.66

Table 5. Performance comparison of different variants of 3D IoU
losses on KITTI val set.

Figure 3. Visualization of some detections on KITTI test set.

troduces an additional orientation constraint based on DIoU
loss, it obtains an improvement of 0.24 points on its ba-
sis. RDIoU [26] is the most recent approach, which decou-
ples the angles to avoid the sub-optimal regression caused
by rotation. RDIoU achieves a moderate AP of 79.61%.
Our GCIoU loss solves the anomalous gradient variation,
achieving fast and accurate model convergence, and there-
fore improves the performance of IoU-based losses. Finally,
our method achieves the highest moderate AP of 80.03%.

5.3. Main Results on KITTI Dataset

We also compare the proposed method with some state-
of-the-art models as listed in Tab. 6. We trained the model
from scratch on train + val set, and then report results on
test set on KITTI dataset. The model based on GCIoU
loss achieves moderate AP of 80.43% and mAP of 81.47%,
which outperforms the compared one-stage mehtods. Since
our method is simple with minor modifications to the lo-
calization loss, and no complex data augmentation and pre-
training strategies are applied, the final performance is still
lower than some advanced detectors such as PV-RCNN [27]
and PointFormer [20]. But GCIoU loss is general and flexi-
ble, and it can be applied to existing frameworks to achieve
further performance gains. Some detections are shown in
Fig. 3. The results illustrate that GCIoU loss helps to accu-
rately locate objects in 3D scenes.

Method Reference
3D

Easy Mod. Hard mAP

Tw
o

St
ag

e

Part-A2 [29] TPAMI 2020 87.81 78.49 73.51 79.94
STD [39] ICCV 2019 87.95 79.71 75.09 80.92

3D-CVF [40] ECCV 2020 89.20 80.05 73.11 80.79
PV-RCNN [27] CVPR 2020 90.25 81.43 76.82 82.83

PointFormer [20] CVPR 2021 90.05 79.65 78.89 82.86

O
ne

St
ag

e

SECOND Sensors 2018 83.34 72.55 65.82 73.90
PointPillars [11] CVPR 2019 82.58 74.31 68.99 75.29

TANet [14] AAAI 2020 84.39 75.94 68.82 76.38
HVPR [19] CVPR 2021 86.38 77.92 73.04 79.11

HotSpotNet [1] ECCV 2020 87.60 78.31 73.34 79.75
SA-SSD [7] CVPR 2020 88.75 79.79 74.16 80.90

CIA-SSD [45] AAAI 2021 89.59 80.28 72.87 80.91
SVGA-Net [8] AAAI 2022 87.33 80.47 75.91 81.24
IA-SSD [42] CVPR 2022 88.87 80.32 75.10 81.43

Ours — 86.83 80.83 76.77 81.47

Table 6. Comparisons with some state-of-the-art methods of Car
category on KITTI test set. We mark the best performance among
one-stage detectors and two-stage detectors, respectively.

6. Conclusion and Limitation

In this paper, we discuss the issues of IoU based loss in
3D object detection. We demonstrate through experiments
and mathematical proof that the gradients of 3D IoU loss
w.r.t. angle error and the object scale change abnormally
during training. These problems hinder the model conver-
gence and degrade the detection performance. On this ba-
sis, a gradient-correction IoU loss is proposed to achieve
fast and accurate angle convergence by optimizing the gra-
dient. Then, a gradient rescaling strategy is adopted to adap-
tively adjust the optimization step size for objects of differ-
ent sizes. Our method can be applied into existing models
to achieve stable performance gains. Extensive experiments
on the public KITTI dataset demonstrate its superiority.

However, there are certain limitations. Firstly, we only
consider major cases of 3D IoU computation. A concise and
unified way could be found in the future to calculate 3D IoU
uniformly to avoid the gradient anomalies. Secondly, we set
some assumptions when designing GCIoU loss, so the pro-
posed loss function is not necessarily the optimal solution.
This paper points out the potential drawbacks of IoU loss,
and these issues could be future research directions.
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