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Abstract

Oriented object detection in aerial images has received extensive attention due to its wide range of application scenarios. Although

great success has been achieved, current methods still suffer from inferior high-precision detection performance. Firstly, the clas-

sification scores cannot truly represent the localization accuracy of the predictions. Secondly, the orientation prediction in these

detectors is not accurate enough for high-precision object detection. In this paper, we propose a Task Interleaving and Orientation

Estimation Detector (TIOE-Det) for high-quality oriented object detection in aerial images. Specifically, a posterior hierarchical

alignment (PHA) label is proposed to optimize the detection pipeline. TIOE-Det adopts PHA label to integrate fine-grained pos-

terior localization guidance into classification task to address the misalignment between classification and localization subtasks.

Then, a balanced alignment loss is developed to solve the imbalance localization loss contribution in PHA prediction. Moreover,

we propose a progressive orientation estimation (POE) strategy to approximate the orientation of objects with n-ary codes. On

this basis, an angular deviation weighting strategy is proposed to achieve accurate evaluation of angle deviation in POE strategy.

TIOE-Det achieves significant gains on high-precision detection performance. Extensive experiments on multiple datasets prove

the superiority of our approach.
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1. Introduction

Object detection in aerial images has been a hot topic in re-

cent years. As the available satellite data increased rapidly, ef-

ficient detection of objects of interest in aerial images has be-

come a crucial issue. Traditional methods usually use hand-

craft features for object detection [1, 2], which are both time-

consuming and not accurate enough.

Over the past few years, the development of deep learning

has greatly promoted the progress in generic object detection.

The powerful and efficient feature extraction ability of convo-10

lutional neural networks (CNNs) enable the detector to have

both high speed and high accuracy. A series of advanced detec-

tors have been proposed to achieve high-performance detection

with horizontal bounding box (HBB), such as Faster R-CNN [3]

and YOLO series [4, 5, 6]. These detectors decouple the object

detection task into a category recognition subtask and a posi-

tion regression subtask, and then design independent branches

to complete the respective tasks.

Objects in aerial images often have arbitrary orientations.

The horizontal bounding box used in generic object detection20

cannot locate these oriented aerial objects well. Therefore, ro-

tation detectors use the oriented bounding box (OBB) to repre-

sent the ground-truth (GT) objects in the aerial images[7, 8, 9].

The GT object is denoted as (cx, cy, w, h, θ) under the OBB

representation, in which (cx, cy) denotes the center point of the

OBB, (w, h) is the weight and the height of box, θ represents

the orientation of object. Recently, many advanced rotation de-

tectors have been proposed to achieve accurate oriented object
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(b) Predictions

Figure 1: Visualization of the ground-truth box (blue), preset anchors (dotted

line) and its regression boxes (solid line). The predicted box with higher IoU

(0.8>0.7) gets a lower classification score (0.8<0.9), which reveals that the

binary classification label cannot distinguish bounding boxes with different lo-

calization accuracy.

detection in aerial images[8, 10, 11, 12, 13, 14, 15]. How-

ever, high-precision oriented object detection in aerial images30

remains a challenging task. Most of the existing rotation detec-

tors are developed from the generic object detectors by directly

introducing an extra angle prediction. Therefore, the frame-

work does not adapt to oriented object detection.

Firstly, rotation detectors usually adopt the unrelated classifi-

cation and regression branches to achieve oriented object detec-

tion. The independent prediction of the two tasks makes them

incompatible, which degrades high-precision detection perfor-

mance. Specifically, a high classification score of the predicted

box cannot guarantee a good localization result. For example,40

the two anchors in Fig. 1a are regarded as positive samples,

and thus ground-truth (GT) labels for classification are set to

1. However, their corresponding predictions in Fig. 1b show

that the predicted box with better localization accuracy gets

lower predicted classification scores. This high-quality but low-

scoring detection would be suppressed in the Non-Maximum

Suppression (NMS) process, leading to the weak correlation

between classification score and localization accuracy.

We further visualized the Intersection-over-Union (IoU) dis-

tribution of detections to confirm the above comments. We50

trained the rotated RetinaNet [16] on HRSC2016 dataset [17],

and then performed inference on testing images and counted the

detections with the predicted classification score higher than
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Figure 2: Illustration of IoU distribution between all detections and GT boxes.

The output detections is obtained through NMS from all detections. (a) reveals

that many high-quality detections cannot be effectively output due to the incon-

sistency between classification and regression, which hurts the high-precision

detection performance. (b) achieves significant high-precision detection perfor-

mance through task interleaving and consistency learning.

0.5. Before NMS, the IoU of predictions has a large vari-

ance and includes many potential high-precision detections (see

Fig. 2a). However, when NMS is performed based on the classi-

fication confidence, high-quality detections are suppressed due

to unreliable classification scores.

Secondly, many rotation detectors suffer from inaccurate ori-

entation regression introduced by angle prediction in OBB.60

The mainstream rotation detectors directly regress the angle

of OBB, which gives rise to three issues. Firstly, angle pre-

diction should be paid more attention for high-precision ori-

ented object detection, but most rotation detectors often treat

different variables equally in regression loss. Secondly, the

boundary of the angle definition leads to a suboptimal an-

gle optimization process. As shown in Fig. 3, with the

angle defined in [0, 180o), the real angular deviation be-

tween the anchor box (100, 100, 600, 100, 0o) and the GT box

(100, 100, 600, 100, 175o) is quite small, there is only an slight70

angle offset of 5o. But angular deviation would be calculated as

175o due to the boundary of angle definition, which leads to a

large angle loss. As a result, the regression loss may oscillate

and leads to a suboptimal optimization process as shown in the

right of Fig. 3. Thirdly, for the objects with large aspect ratios

(such as bridges, ships), a slight angular deviation will cause the
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Figure 3: Oscillation of angle regression loss caused by the inadequate orienta-

tion representation. Due to the definition boundary of the angle, it’s suboptimal

to direct regress the angles in OBB representation.

IoU between the predictions and the GT boxes to drop sharply.

The angle loss of these objects should not be treated the same

as that of square-like objects.

To solve the above-mentioned problems, in this paper, we80

proposed a novel Task Interleaving and Orientation Estimation

detector (TIOE-Det) for high-precision oriented object detec-

tion in aerial images. TIOE-Det discards the binary classifi-

cation branch and adopts a task interleaving branch to inter-

weave class recognition task and OBB regression task under

a unified pipeline. Specifically, a posterior hierarchical align-

ment (PHA) label is designed to introduce fine-grained pos-

terior localization guidance into classification task. Next, we

propose a balanced alignment loss (BAL) to solve dominant

loss contribution of negatives in PHA prediction. During the90

inference stage, localization-guided NMS is conducted to ob-

tain high-precision detections based on PHA scores. As shown

in Fig. 2b,TIOE-Det outputs credible detections with high IoUs

and thus achieves better high-precision detection performance.

To achieve accurate orientation prediction, we propose a pro-

gressive orientation estimation (POE) strategy to optimize an-

gle prediction in TIOE-Det. The POE strategy encodes the GT

angle into a discrete n-ary code via a progressive approximat-

ing manner. Continuous angles are transformed into efficient

discrete codes within an acceptable error range. In this way, the100

suboptimal optimization problem could be solved. Then, an an-

gular deviation weighting (ADW) strategy is designed to further

optimize the angle loss under POE representation. The ADW

strategy comprehensively considers the aspect ratio, angular er-

ror, and gradient optimization to determine the magnitude of

angle loss for better convergence.

TIOE-Det achieves superior high-precision detection accu-

racy, and outperforms many recent advanced rotation detec-

tors. Extensive experiments on multiple aerial image datasets

demonstrate the effectiveness of our method. The main contri-110

bution of this paper can be summarized as follows:

• A novel TIOE-Det is proposed to achieve high-precision

oriented object detection by bridging the inconsistency be-

tween subtasks and optimizing the orientation prediction.

• We observed that binary classification task lead to mis-

aligned classification and regression performance. A pos-

terior hierarchical alignment label is then proposed to use

fine-grained posterior localization guidance to optimize

the detection pipeline in rotation detectors.

• We innovatively represent angles as n-ary codes via a pro-120

gressive orientation estimation (POE) method for high-

precision OBB regression. Meanwhile, the angular devia-

tion weighting strategy is developed to adaptively correct

POE deviation to further performance gains.

2. Related Work

2.1. Oriented Object Detection

Object detection is an important topic in the field of com-

puter vision. Over the past decade, a series of detectors have

been proposed to detect objects using horizontal bounding box

(HBB) [18, 3, 4, 5]. Recently, oriented object detection in130

aerial images has received more and more attention due to its

wide range of application scenarios. The objects in the aerial

images are from a bird’s-eye view with arbitrary orientations.

Therefore, the oriented bounding box (OBB) is used to rep-

resent arbitrary-oriented objects. Many advanced rotation de-

tectors have been developed to detect oriented objects in the

aerial images [10, 13, 11, 14, 19, 20]. Since there is large vari-

ations in angle, scale, and aspect ratio of the objects in aerial
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scenes, these methods preset densely laid anchor boxes for ac-

curate detection, such as SCRDet [19], RRPN [21]. The dense140

anchors bring redundant overhead and lead to imbalance prob-

lems. Some methods preset horizontal anchors to alleviate the

imbalance issue [20, 8, 10]. For example, RoI Transformer

[20] transforms a horizontal RoI into a rotated RoI and then

extracts rotation-invariant features for classification and regres-

sion. S2A-Net [10] generates high-quality oriented anchors via

anchor refinement and adaptively aligns the convolutional fea-

tures with the anchors.

Some works focus on feature extraction in oriented object

detection [8, 7, 10]. For example, Ming et al.[8] suggested150

that the classification and regression tasks respond differently

to features in oriented object detection. Then, a polarized at-

tention mechanism is proposed to extract task-sensitive feature

maps. R3Det [7] builds aligned feature maps to accommodate

the localization offsets of the refined bounding boxes.

Optimization of regression loss for oriented object detection

is another hot topic recently. The extra angle prediction in OBB

representation derives many issues, such as loss oscillation

caused by out-of-bounds angle [22], ambiguity of OBB rep-

resentations [12]. Circular Smooth Label [22] tackles the out-160

of-bounds angles by transforming orientation regression into a

classification task. RIDet [12] treats ambiguous representations

as equivalent local minima to optimize angular error with a rep-

resentation invariance loss. Yang et al.[14, 11] adopted Gaus-

sian wasserstein distance and Kullback-Leibler divergence to

measure the distance between OBBs, thus avoiding the prob-

lems caused by angle prediction.

2.2. Misaligned Classification and Regression

The misalignment between classification and regression indi-

cates that the classification scores of the predictions cannot rep-170

resent the localization accuracy of the predictions. This issue

has been discussed in some previous work in horizontal object

detection. For example, some work [23] realigns RoI features

to eliminate feature offsets of RoIs, which helps the NMS pro-

cedure to select well localized bounding boxes. Miao et al. [24]

suggested that the misalignment stems from unreasonable train-

ing sample selection and designed a dynamic anchor learning

strategy to select high-quality positives.

Some work have tried to directly predict the IoU between

the detections and GT boxes to guide NMS procedure, and180

thus bridging the gap between classification and regression

[25, 26, 23]. IoU-Net [25] and IoU-uniform R-CNN [23] use

an additional IoU prediction branch to evaluate the localiza-

tion accuracy of the detections for the NMS process. Meth-

ods such as VFNet[27] and cleanliness scores [26] combine

IoU with classification scores to select high-quality detections.

There are some methods obtain credible classification con-

fidence by uncertainty estimation, such as softer-NMS [28],

Gaussian YOLOv3 [29].

However, there are still some problems in these methods.190

Firstly, most of these works ignore that the binary GT labels

of the classification task are the culprit of the misaligned classi-

fication and regression performance. The binary classification

branch is still adopted during training and inference, and thus

the predicted confidence is unreliable. Secondly, the semantic

information of IoU is obscure and hard to identify. The meth-

ods that use IoU prediction branches often design complex IoU

regression structures and training strategies, such as IoU-Net

[25]. Even so, IoU prediction is still not accurate enough, and

the network is hard to converge. Thirdly, the extra IoU predic-200

tion branch introduces additional computational overhead and

reduces the inference speed. We will make improvements in

these areas in this paper.

2.3. Angle Prediction in Rotation Detectors

Objects in aerial images are usually arbitrary-oriented. The

simple and effective represent is the oriented bounding box

(OBB) denoted as (cx, cy, w, h, θ), which is also the main-

stream representation in current rotation detectors [10, 13, 11,

14, 19, 20, 12]. The angle variable introduced in OBB derives

many problems.210

The boundary of the angle definition leads to a suboptimal

angle optimization process, which has been discussed in some
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Figure 4: Overview of our proposed TIOE-Det. ‘C’ is the total number of categories, ‘A’ denotes the number of anchors laid at each position of the feature map,

and ‘B’ is the length of the POE coding of orientations. ’only train’ means it ony works during the training process, likewise for ’only test’ and ’train and test’.

previous work [30, 22, 12, 31]. To solve the issue, the work [12]

propose a representation invariance loss, which treats redundant

OBB representations as equivalent local minima for consistent

optimization. Llerena, J. M. et al. [11] transform the OBB into

a Gaussian distribution, and use a covariance matrix to repre-

sent the orientation of the OBB. There are also methods to dis-

cretize the angle variable to optimize angle prediction. For ex-

ample, Circular Smooth Label [22] (CSL) transforms the angle220

regression into a angle classification task via gaussian window

function. But the overly heavy angle classification head brings

large computational burden and reduces the inference speed.

Densely Coded Labels [30] (DCL) solves the problem by using

Binary code and Gray code for efficient angle encoding. How-

ever, neither CSL nor DCL considers the impact of different

bits in the coding method on IoU variations.

Besides, aerial images often contain a large number of ob-

jects with large aspect ratios, such as bridges, trucks. For these

objects, a slight angular deviation will cause the IoU between230

the predictions and the GT boxes to drop sharply, and thus an-

gle prediction should be paid more attention. Zhang et al. [32]

proposed a aspect ratio guided method for more accurate angle

regression for long objects. Zhu et al. [33] designed a length-

independent IoU to increase the tolerance of long and narrow

objects in the label assignment for better angle performance.

3. Proposed Method

The overall framework of our TIOE-Det is shown in Fig. 4.

TIOE-Det uses a fully convolutional network to extract multi-

scale features. Then, three branches are adopted to locate the240

objects and conduct class recognition. The HBB regression

branch together with POE prediction branch determine the po-

sition of the objects in the images. Next, the task interleaving

branch predicts PHA scores to determine the class and localiza-

tion confidence of the predicted boxes. Finally, localization-

guided NMS is performed during inference to select high-

precision detections based on the predicted PHA scores.
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(a) IoU = 0.50 (b) IoU = 0.80 (c) IoU = 0.85

Figure 5: Illustration of different IoU cases between GT box (blue) and corre-

sponding detections (red).

3.1. Posterior Hierarchical Alignment Label

Current rotation detectors often use a unified IoU threshold

between GT boxes and preset anchors for training sample se-250

lection (also called label assignment). We suggest that various

rotated IoUs between two OBBs should be treated differently

during training. As illustrated in Fig. 5a, the predicted box with

an IoU of 0.5 has a poor spatial alignment with GT box. This

detection should not be treated the same as the one with an IoU

of 0.8 in Fig. 5b. However, current methods treat them equally

as positive samples in classification branch and their class labels

are all set to 1. In this case, the classifier cannot select detec-

tions with accurate localization results based on the classifica-

tion scores. Hence it is not conducive to high-quality oriented260

object detection.

The most intuitive solution is to introduce the posterior lo-

calization guidance to the classification task, just like the IoU

prediction methods [25, 34, 35, 27]. Although good perfor-

mance has been achieved by these methods, there are still many

problems, which can be summarized into the following three

folds:

1) Firstly, the semantic information of IoU is very obscure,

and it is hard to predict IoU accurately. Most IoU predic-

tion work designs complex network [34] or independent270

training strategy [25] to predict IoU, which not only makes

the model more complicated, but also still suffers from the

hard convergence of IoU prediction.

2) Secondly, it is unnecessary to predict the accurate IoU for

low-quality detections (e.g. samples with IoU <0.1). The

IoU prediction for low-quality samples does not help im-

prove the performance, but hinders network convergence.

3) Moreover, completely accurate IoU prediction for posi-

tives is inefficient and may brings slight performance im-

provement. For example, The two detections with IoU of280

0.80 and 0.85 are almost the same spatially (see Fig. 5b

and Fig. 5c). However, the continuous IoU is hard to learn-

ing.

Based on the above observations, we propose the posterior

hierarchical alignment (PHA) label as an efficient metric for

interleaving classification and localization tasks. The clas-

sification branch is replaced with a PHA prediction branch.

Then, PHA label assignment is conducted based on the prior

knowledge from both category and localization to select high-

quality samples. Finally, the predicted PHA scores are used290

for localization-guided NMS for high-precision detections. The

detailed definition of PHA label is introduced as follows.

We denote the IoU between a predicted box and its corre-

sponding GT box as o, which also represents posterior spatial

alignment of the outputs. Tp and Tn are the IoU thresholds to

determine the positives and negatives, respectively. The poste-

rior IoU interval is divided into l intervals:

δ = (1.0− Tp)/l. (1)

Next, the PHA label o∗ is defined as follows:

o∗(o) =

 (⌊o/δ⌋+ 1) · δ if o > Tp

0 if o < Tn,
(2)

in which ⌊·⌋ is the floor function.

PHA label divides posterior IoU of the prediction into fine-300

grained quality intervals, which effectively characterize local-

ization accuracy. Compared with the overly fine posterior IoU

prediction, our discrete but accurate PHA labels are more con-

ducive to network convergence to achieve better performance.

Meanwhile, we set PHA label of low-quality samples to be 0

in Eq. (2). Since these samples might produce abnormally high

scores during inference stage if no supervision was imposed.
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Algorithm 1 Localization-Guided NMS

Input: B = {b1, b2, ..., bn} is a N × 5 matrix of detection

boxes. S = {s1, s2, ..., sn} denotes the PHA scores. Nt is

the NMS threshold.

Output: D = {d1, d2, ..., dn} is a N × 5 matrix of final de-

tections.

D ⇐ {}

while B ̸= ∅ do

m⇐ argmaxS

M ⇐ bm

D ⇐ D ∪M ; B ⇐ B −M

for bi inB do

if IoU(M, bi) ≥ Nt then

B ⇐ B − bi ; S ⇐ S − si

end if

end for

end while

return D,S

Besides, we adopted a curriculum learning based training

strategy to gradually increase the number of PHA levels for a

more smooth and stable training process. The adaptive PHA

level is as follows:

l(t) =

⌊
t

l0

⌋
+ 1, (3)

in which t = iters
Max Iteration , and Max Iteration is the total

number of iterations. l0 is the number of PHA levels that is fi-

nally adopted. The number of levels is gradually increased in310

different intervals until it reaches l0. We use fewer PHA inter-

vals in initial training stage so that the network can converge

more quickly. As the model converges, the number of levels

adaptively increases so that the model can distinguish IoU in

different intervals and then recognize high-quality detections.

In the inference stage, we design a localization-Guided NMS

(LG-NMS) to select high-quality detections with predicted

PHA scores. The category with highest PHA score of a pre-

diction box will be selected as predicted class. Then the predic-

tions with PHA scores less than preset threshold are suppressed.320

Different from traditional NMS procedure that use classifica-

tion score for sample selection, LG-NMS adopts the credible

PHA score to ensure high-quality detections. In this way, pre-

dictions with accurate localization results will be selected as the

final detections. Therefore, LG-NMS effectively bridges the in-

consistency of classification and regression. The pseudo-code

of LG-NMS can be found in Algorithm 1.

3.2. Progressive Orientation Estimation

Accurate angle prediction is quite important for high-

precision oriented object detection in aerial images. Angle rep-330

resentation is periodic, which means that many angle represen-

tations may represent the same real orientation. It would hin-

der the model convergence[22]. Intuitively, transforming an-

gle regression into an angle classification task could avoid the

problem of redundant representation of angles. Some previous

work [22, 30] tried to regard the orientation prediction task as

an angle classification task, but still suffer from heavy heads,

intolerable errors, or hard optimization. To optimize the angle

classification method, we propose a heuristic orientation encod-

ing method into TIOE-Det, which is called progressive orienta-340

tion estimation (POE). POE is a heuristic and flexible encoding

method. On the one hand, POE has practical physical meaning

and is easy to learn. On the other hand, we can flexibly ad-

just the representation of POE according to the angle prediction

accuracy requirements of different detection tasks.

Given the pre-defined angle range R = [R0, R1) (such as R

= [0, 180◦)), we encode object orientation θ into a discrete n-

ary code Θ that has N significant conditions, and N ∈ N+ .

We denote ∆R = R1 − R0 as the length of angle range. Both

R0, R1, and ∆R are converted to degrees. The total length of

Θ is as follows:

k(R,N) = min{x ∈ Z|Nx ≥ ∆R}. (4)

Note that the n-ary code can represent digits in [0, Nk), which

is beyond the real angle range ∆R. We constrain the represen-

tation range into the given angle range via a angle unit δ:

δ = ∆R/Nk. (5)
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Figure 6: Illustration of the flow of POE coding for a given θ = 70◦ with

N = 2.

The target n-ary code is a tuple denoted as Θ = (e1, e2, ..., ek),

in which:
ek(θ) =

⌊
(
θ

δ
)/Nk−1

⌋
ei(θ) =

⌊
θ
δ −

∑k−1
j=i (ej+1N

j)

N i−1

⌋
, i ∈ {1, 2, ..., (k − 1)}

.

(6)

where ⌊·⌋ is the floor function. Eq. (6) recursively divides the

total angle interval and progressively approximates the real ori-

entation of the bounding box. The N significant conditions in

n-ary code divide the angle interval into N equal subintervals,

and the angle interval is determined by the position of the code350

symbol.

Shown in Fig. 6 is a special case of POE when N = 2. In

this case, the GT angle θ is encoded as a binary code Θ and

k = 8. We first divide the entire angle range R = [0, 180◦) into

two subintervals Rl = [0, 90◦) and Rr = [90◦, 180◦). Since

that θ ∈ Rl, we know b8 = 0. On this basis, we further divide

the Rl into R′
l = [0, 45◦) and R′

r = [45◦, 90◦). Then we know

b7 = 1 since θ ∈ R′
r. Other digits of POE coding are also

obtained by recursively refining the interval and approximating

GT orientation.360

Although POE is an approximate encoding of continuous an-

gles, the angular error is tolerable. The angular error of POE

is always less than 1◦ according to the definition in Eq. 4 and

Eq. 5. For instance, in the example in Fig. 6, the angle range

[0, 180◦) is encoded into the binary code. The maximum angu-

lar error is the angle unit in Eq. 5, that is, δ = R1

Nk = 180◦

28 ≈

0.703◦. Such a small angular deviation could hardly be rec-

ognized and would not bring much representation error. We

visualize the change of IoU with aspect ratios and scales un-

der angle error of x0.703◦ as shown in Fig. 7a. The maximum370

IoU deviation is only about 0.06, which hardly affects detection

performance.

During inference stage, the predicted POE vector Θ is de-

coded into the angle representation as follows:

θ(Θ) = R0 +

k∑
i=1

(N i−1ei) (7)

Our method is a heuristic progressive search strategy for ori-

entation encoding, which is a general form of similar angle

classification methods. For instance, when N = 180 in Eq. 4,

our POE is simplified to one-hot angle encoding method [31].

When N = 2 in Eq. 4, our encoding is the same as to binary

encoding in DCL [30]. POE demonstrates the effectiveness of

n-ary codes from the perspective of progressive orientation ap-

proximation. In this way, it gives a general and flexible form of380

angle classification representation and an intuitive explanation

of its feasibility.

Furthermore, POE is superior to the previous angle classifi-

cation methods. The overly heavy classification head leads to

slow inference speed, such as CSL [22] and MEBOW [31]. On

the contrary, the coarse-grained angle encoding cannot accu-

rately measure the deviation of the angle, such as DCL [30].

Our method is more generalized and flexible, and we can adjust

the significant conditions of POE to make a trade-off between

accuracy and computational overhead. Besides, some exist-390

ing angle classification methods deviate from practical mean-

ing and thus they are difficult to learn, such as angle encoding

with Gray code [30]. POE coding is an interpretable method

inspired by progressive orientation approximation, and thus it

is easier to converge.

3.3. Loss Function

We designed two novel loss functions for the proposed PHA

prediction branch and POE strategy to further optimize detec-

tion performance.
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Figure 7: Visualization of IoU with variation of bounding box area, aspect ra-

tios, and angular errors. Two center-aligned OBBs have the same area. Visual-

ization result in (a) adopts a fixed angular error of 0.703◦ (N=2 in POE coding),

and the IoU deviation is quite small, which ensures that POE strategy does not

degrade detection accuracy. The results in (b) show that a slight angular error

would lead to a drastic drop in IoU for OBBs with large aspect ratios.

3.3.1. Balanced Alignment Loss400

Most of the predictions in the feature maps are background.

These massive low-quality anchors with very low PHA scores

will dominate the training loss, which makes it hard to optimize

the PHA predictions for positives.

To solve the problem, we propose the balanced alignment

loss (BAL) to balance the influence of positives and negatives.

For a detection box with predicted PHA score õ, its deviation

from PHA label o∗ is denoted as ∆:

∆ = |o∗ − õ| (8)

Then, the balanced alignment loss is as follows:

BAL(õ, o∗) = −∆αlog(∆)·[1−χ(o∗)]−∆βlog(∆)χ(o∗) (9)

in which χ(·) is the indicator function:

χ(o∗) =

 1 if o∗ > Tp

0 if o∗ < Tn,
(10)

Tp and Tn are the thresholds for training sample division of

positives and negatives, respectively. α and β are modulation

parameters to control the contribution of training samples with

different PHA contribution to the loss. BAL reduces the loss

contribution of the simple background candidates and positives

through modulation terms ∆α and ∆β . Meanwhile, by adjust-410

ing α and β, we could make a trade-off between the loss con-

tribution of positives and negatives for balanced training.

Then, the BAL for PHA prediction during training is defined

as follows:

LPHA(õ,o
∗) =

1

N

∑
i∈ψ

BAL(õi,o∗
i ), (11)

in whichψ indicates the total training samples. o∗ is PHA labels

assigned to a certain class of objects. õ represents the class-

specific PHA prediction. Note that õ ∈ RN×C and õ ∈ [0, 1],

N is the number of total anchors and C denotes the classes. In

the inference stage, we will select the class with the highest IoU

predicted by each anchor and use it as the class prediction result

and confidence.

3.3.2. IoU Loss420

We decouple the OBB prediction into HBB prediction and

POE coding prediction in TIOE-Det (see Fig. 4). The corre-

sponding loss functions are described below.

The scales of objects in aerial images varies greatly. IoU

is scale invariant when measuring the spatial gap between

two HBBs. Therefore, we use IoU loss for HBB regression

in TIOE-Det. For each object g, its OBB representation is

b∗i = (cx∗, cy∗, w∗, h∗, θ∗) , in which (cx∗, cy∗) is center coor-

dinate of OBB, (w∗, h∗, θ∗) denote width, height, and angle of

the box, respectively. Its corresponding prediction is denoted430

as bi = (cx, cy, w, h, θ). Then, the IoU loss for HBB is as

follows:

LIoU(b, b
∗) =

1

Np

∑
i∈ψp

[
1− o(b∗i , bi)|θ∗=θ=0

]
(12)

where Np indicates the number of positive anchors ψp. b ∈

RN×5 is total anchors, and b∗ ∈ RN×5 denotes the corre-

sponding GT box. o(·) calculates the IoU between two boxes.

3.3.3. Angular Distance Weighting

Another major problem is the angular error measurement in

POE coding. Previous classification-based rotation detectors

suffer from two issues. Firstly, these method usually treat the

9



impact of different bits equally in angle coding [30, 22, 31], and440

therefore they produce the same gradients for different angular

errors. We suggest that high bits in the POE coding have a

greater impact on the angular error. For example, if the model

outputs b7 = 1 in Fig. 6, the predicted angle is far away from

the correct orientation, while the influence of incorrect b1 does

not hurt so much. Secondly, these methods still suffer from

misalignment between angle loss and detection performance.

For example, if the angle range [0, 180◦) is transformed into

180 angle classes, the cross entropy loss between 46◦ and 45◦

degrees is the same as that between 1◦ and 45◦. They all have450

only two different digits in the encoded labels and lead to same

angle loss, which is obviously unreasonable.

We proposed an angular distance weighting (ADW) strategy

to optimize the angle classification loss and address the above

issues. The ADW consists of two parts: angular offset met-

ric (AOM) and encoding offset metric (EOM). The AOM mea-

sures the importance of angular error for accurate localization,

while EOM evaluates the importance of different bits within

POE coding. Specifically, AOM is defined as follows:

AOM(∆θ, r) = (∆θ − sin∆θ)︸ ︷︷ ︸
f(∆θ)

· ln(r + e− 1)︸ ︷︷ ︸
g(r)

, (13)

where ∆θ denotes the angular error between the orientation of

GT box θ∗ and that of predicted box θ. r is aspect ratio of GT

box. f(∆θ) and g(r) are functions of ∆θ and r respectively,

and we will introduce them later.

Next, AOM is weighted to angle loss together with an EOM

as follows:

LANG(e, e
∗) = AOM(∆θ, r)·

k∑
i=1

(N i−1)γ︸ ︷︷ ︸
EOM

·FL(ei, e∗i ), (14)

in which e and e∗ denotes POE coding of a prediction and its

GT label. FL(·) is focal loss [16] for angle classification. γ

is hyperparameter to adjust the contribution of different bits

in POE coding to total loss. (N i−1)γ is the EOM to distin-460

guish different position of POE labels. The accurate prediction

of higher significant bits is more important that of lower bits,

therefore, EOM weighting is larger for high bits.

Next, the AOM in Eq. (13) is to determine the magnitude of

angle loss. A good AOM should satisfy following properties:

Property 1: g(r) is monotonically increasing w.r.t. the as-

pect ratio r. For objects with large aspect ratios, slight angular

deviation would lead to a sharp drop in detection accuracy (see

Fig. 7b) and thus require additional attention.

Property 2: f(∆θ) is monotonically increasing w.r.t the an-470

gular deviation. That is, a small angle loss should guarantee a

small angular error, so that the model converges correctly.

Property 3: The gradient of f(∆θ) w.r.t. angular error is a

monotonically increasing function. When the angular error is

large, a large gradient is expected for fast convergence. Con-

versely, a small gradient is required to achieve accurate predic-

tion as angular error is small.

On the basis of above considerations, the AOM is designed

as show in Eq. (13). In Eq. (13), r ∈ [1,+∞]. ∆θ is the

angular error, and ∆θ ∈ [0, π). g(r) = ln(r+ e−1) = 1 when480

r = 1 for squre-like objects. As r ↑, g(r) ↑, u ↑, and LANG ↑,

therefore the Property 1 holds. When ∆θ ↓, f(∆θ) = (∆θ −

sin∆θ) ↓, LANG ↓, and thus the Property 2 is established.

Since f ′(∆θ) = ∆θ − cos(∆θ), when ∆θ ↓, f ′(∆θ), ↓, the

Property 3 is also satisfied. Therefore, AOM(·) in Eq. 13 is a

good candidate to evaluate angular deviation.

The above two modules in ADW strategy bridge the inconsis-

tency between the angle loss and real angle deviation, and help

to achieve fast angular convergence and accurate prediction.

The overall loss of our TIOE-Det combines the above parts,490

which is denoted as follows:

L = λ1 · LPHA + λ2 · LIoU + λ3 · LANG, (15)

where LPHA , LIoU, LANG are the PHA prediction loss, HBB

prediction loss, and angle loss, respectively. These loss items

are balanced via parameters λ1, λ2, λ3, (λ1=λ2=λ3=1 in our ex-

periments).
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4. Experimental Setup

4.1. Datasets

Extensive experiments are conducted on multiple publicly

available aerial image datasets, including DOTA [36], FAIR1M

[37], DIOR-R [38], HRSC2016 [17], UCAS-AOD [39], UAV-500

ROD [40].

DOTA [36] is a large-scale aerial and satellite imagery

datasets with oriented bounding box annotations. It contains

2806 aerial images with 188282 annotated instances. There

are 15 categories including plane (PL), baseball diamond (BD),

bridge (BR), ground track field (GTF), small vehicle (SV), large

vehicle (LV), ship (SH), tennis court (TC), basketball court

(BC), storage tank (ST), soccer ball field (SBF), roundabout

(RA), harbor (HA), swimming pool (SP), and helicopter (HC).

The original size of images in the dataset ranges from about 800510

× 800 to about 4,000 × 4,000 pixels.

FAIR1M [37] is a recent benchmark dataset for fine-grained

object recognition in aerial imagery with more than 1 million

instances and more than 15,000 images. All objects in the

dataset are annotated to 37 categories by oriented bounding

boxes, including Boeing 737, Boeing 777, Boeing 747, Boe-

ing 787, Airbus A320, Airbus A220, Airbus A330, Airbus

A350, COMAC C919, COMAC ARJ21, other-airplane, pas-

senger ship, motorboat, fishing boat, tugboat, engineering ship,

liquid cargo ship, dry cargo ship, warship, other-ship, small car,520

bus, cargo truck, dump truck, van, trailer, tractor, truck tractor,

excavator, other-vehicle, baseball field, basketball court, foot-

ball field, tennis court, roundabout, intersection, and bridge.

The image width in FAIR1M ranges from 1000 to 10,000 pix-

els.

DIOR-R [38] is a large benchmark for object detection in

remote sensing images, which contains 23,463 images and

192,518 instances. There are total 20 classes, including airplane

(APL), airport (APO), baseball field (BF), basketball court

(BC), bridge (BR), chimney (CH), expressway service area530

(ESA), expressway toll station (ETS), dam (DAM), golf field

(GF), ground track field (GTF), harbor (HA), overpass (OP),
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Figure 8: The correlation between localization accuracy and corresponding

confidence, the Pearson correlation coefficients are : (a) 0.08 for baseline

model, and (b) 0.37 with our PHA prediction.
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Figure 9: Comparison of high-precision detection performance with different

labels.

ship (SH), stadium (STA), storage tank (STO), tennis court

(TC), train station (TS), vehicle (VE) and windmill (WM). The

size of images in the dataset is 800×800 pixels.

HRSC2016 dataset [17] collects 1061 images from Google

Earth for high resolution remote sensing ship detection.

HRSC2016 contains lots of ships with large aspect ratios. The

image size range from 300×300 to 1500×900. The total dataset

is divided into training set, validation set, and test set, including540

436, 181, and 444 images, respectively.

UCAS-AOD [39] is an aerial plane and car detection dataset.

It contains 1510 images, including 1000 images for planes and

510 images for cars. UAV-ROD [40] is an aerial car dataset

which contains 1150 images in the training set and 427 images

in the test set.
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Table 1: Evaluation of different components in PHA prediction.

Cls Pred. IoU Pred. PHA Pred. BAL AP75 AP50:90

✓ 53.68 52.54

✓ 45.15 49.89

✓ ✓ 57.61 54.29

✓ ✓ ✓ 65.33 56.01

✓ 67.17 56.50

✓ ✓ 71.74 57.28

Table 2: Evaluation of different setting of PHA labels. * indicates using cur-

riculum learning strategy.

Levels 1 3 5 10 100 5∗

AP50:90 52.2 54.1 55.9 53.3 49.8 56.5

4.2. Experimental Setting

All images are resized to 800×800 or 1024×1024 for train-

ing and testing in our experiments. Note that images in DOTA

and FAIR1M are too large to be fed into the model directly,550

we crop images into patches of 1024×1024 with a stride of

512. We use the Adam optimizer for training, and the initial

learning rate is set to 5×10−4. The models are trained on RTX

3090 GPUs with batch size set to 8. The total training iterations

are 600 epochs for HRSC2016, UCAS-AOD, and UAV-ROD.

For large-scale remote sensing dataset DOTA, DIOR-R, and

FAIR1M, models are trained for 300 epochs. Ablation studies

are conducted on HRSC2016 which contains lots of ships with

large aspect ratios. We use Random flip, rotation, and scaling

for data augmentation.560

We use the Average Precision (AP) and mean Average Preci-

sion (mAP) to evaluate the detection performance. Specifically,

AP50:90 means average precision over different IoU thresholds,

from 0.5 to 0.9, step 0.1. AP50:90 considers high IoU thresholds

so it helps to measure high-precision detection performance.

We employ the mean Average Orientation Error (mAOE◦) to

evaluate angular errors for orientation prediction.

5. Experimental Results

5.1. Ablation Study

5.1.1. Evaluation of PHA Prediction570

Component-wise ablations of PHA. The component-wise ex-

periments of PHA prediction are shown in Table 1. “Cls Pred.”

denote using classification branch, “IoU Pred.” means adopt-

ing IoU branch, and “PHA Pred.” means using PHA prediction

branch. The baseline model with classification branch reaches

the AP50 of 86.09%, AP75 of 53.68%, and AP50:90 of 52.54%.

The variant that directly use IoU branch to replace classifica-

tion branch leads to sharp performance drops of high-precision

detection, AP75 drops by 8.53% and AP50:90 by 2.65%. It

shows that the only prediction of IoU could not work well.580

Then, combination of classification and IoU regression brings

3.93 points improvement on AP75 and 1.75 points on AP50:90

compared with the baseline. We suggest that though binary

classification is not accurate enough, it is more stable and easy

to converge compared with direct IoU prediction. On this ba-

sis, when the PHA labels is adopted, the AP75 is improved

by further 11.65% and AP50:90 by 3.47%. Furthermore, after

removing the classification branch, the model achieves a gain

of 13.49 points on AP75 and 3.96 points on AP50:90. The im-

provements confirms that binary classification labels harm the590

high-precision detection performance. Finally, balanced align-

ment loss alleviates the imbalance problem in PHA prediction,

avoiding too many negative samples to dominate the PHA loss,

so the performance is further improved to reach the AP75 of

71.74% and AP50:90 of 57.28%. In total, our methods improves

the AP75 and AP50:90 of baseline by 18.06% and 4.74% , re-

spectively.

We visualized the correlation between output confidence

scores and regression accuracy of detections in Fig. 8. Illus-

trated in Fig. 8a, there is a weak correlation between classifica-600

tion score and IoU of detections of baseline. The Pearson corre-

lation coefficient is just 0.08. Our method makes the confidence

better represent localization accuracy, thereby reaching a Pear-

son correlation coefficient of 0.37 in Fig. 8b. PHA score helps

12



Table 3: Analysis of different hyperparameters of balanced alignment loss.

β

AP75 α
0.1 0.2 0.5 1.0

2.0 70.4 71.7 71.2 68.3

2.5 70.1 70.9 71.4 68.5

3.0 68.8 68.2 69.5 69.3

to achieve more reliable NMS procedure for high-precision de-

tection.

Different PHA levels. We conducted experiments on the PHA

label assign strategy to find optimal setting s. The experimental

results are shown in Table 2. When the number of PHA levels

is equal to 1, the IoU labels are binary just like the classifica-610

tion task, and it reached AP50:90 of 52.2%. Whereas the variant

with 5 levels achieves AP50:90 of 55.9%, which is the best per-

formance reported among all the levels. It shows that the fine-

grained IoU intervals help to represent the localization accuracy

of detections. As the number of total levels is increased to 100,

the IoU interval is 0.05, which is similar to the continuous IoU

prediction. As a result, AP50:90 dramatically drops to 49.8%,

and it is close to the only IoU prediction method (49.89% in

Table 1). It further proves that it’s hard to predict continuous

IoU directly, and fine-grained PHA labels works better. Finally,620

the curriculum learning strategy achieves smooth model con-

vergence, which improves performance to 56.5%.

As illustrated in Fig. 9, when l = 2, binary label in classifica-

tion branch helps the model converge fast compared with IoU

prediction. Direct prediction of continuous IoU hinders model

convergence and cannot improve high-precision detection per-

formance in early stages of training. PHA label provides ac-

curate posterior localization information and improves network

convergence, therefore achieves fast model convergence and ac-

curate detections.630

Hyperparameters in BAL. We further conducted experiments

to find the optimal hyperparameters for balanced alignment loss

Table 4: Evaluation of different significant conditions in POE coding.

N Reg 2 3 5 8 16

AP50:90 52.54 54.03 54.21 53.21 54.62 53.76

mAOE 6.81 4.45 4.26 5.82 4.08 5.21

Table 5: Performance evaluation of components in ADW strategy.

POE EOM AOM AP50:90 mAOE

✓ 52.71 5.73

✓ ✓ 53.35 5.06

✓ ✓ 54.21 4.63

✓ ✓ ✓ 54.62 4.08

(see Table 3). We found that the best performance would be

obtained when α = 0.2 and β = 2. Hyperparameter sensitiv-

ity experiments show that balanced alignment loss reports good

performance improvements in many parameters. Obviously it

is robust to different parameters within a reasonable range, and

thus hyperparameters tuning for balanced alignment loss is not

troublesome.

5.1.2. Evaluation of POE Strategy640

Different significant conditions. The experimental results in

Table 4 show that different significant conditions N lead to

different performances in POE coding. The baseline model

adopts direct angle regression for oriented bounding box pre-

diction. POE coding under different N all get better perfor-

mance compared with baseline, which proves the superiority of

our method. When N = 8, POE strategy improves AP50:90 by

2.08 points and reduces mAOE by 2.73◦. Note that the maxi-

mum angular error δ ≈ 0.352◦ when N = 8, while δ ≈ 0.288◦

when N = 5. However, detection performance is even dropped650

with the smaller theoretical angular error. We suggest that a

smaller theoretical angular error means more angle intervals are

divided, which makes it hard for the angle classification head to

accurately discriminate the tiny angular error. Hence, there is a

trade-off between detection accuracy and model convergence.
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Table 6: Analysis of hyperparameter in EOM. N = 8 in POE coding.

γ 0 0.1 0.3 0.5 0.7 1.0

AP50:90 52.71 52.83 53.35 48.65 41.35 33.57

mAOE 5.73 5.51 5.06 6.93 7.61 10.36

Component-wise Ablations in ADW strategy. We conduct ex-

periments to evaluate the performance of angular distance

weighting (ADW) strategy for training. The ADW strategy

consists of two parts, angular offset metric (AOM) measures

the angular error of predicted POE coding, and encoding offset660

metric (EOM) distinguishes different bits within POE coding.

The experimental results are shown in the Table 5. Both EOM

and AOM improve high-precision detection performance and

reduce angular error of predictions. Specifically, EOM pays

more attention to the high bits in POE encoding, thus making

the training process more stable. AOM introduces constraints of

angular error, gradient of angular offsets, and aspect ratios into

angle classification loss, which helps to achieve faster conver-

gence and accurate detections. Finally, ADW strategy improves

AP50:90 by 1.91% and reduces the mAOE by 1.65◦ in total.670

Hyperparameters in EOM. In Eq. 14, γ is introduced into

EOM to control the loss contribution of different bits in POE

coding. Further, we conduct experiments to find the optimal hy-

perparameter γ. We set N = 8 in POE coding for fair compar-

ison. As shown in Table 6, when γ = 0.3, TIOE-Det achieves

AP50:90 of 53.35% and mAOE of 5.06◦, which is the best per-

formance among the parameters compared. When γ = 0,

EOM, like many current angle classification methods [22, 30],

treats every bit in the POE encoding equally. In this way, the

wrong prediction of high bits would lead to serious misjudg-680

ment of object orientation, thus achieving inferior performance.

As γ increases, high bits in POE coding are gradually paid more

attention. However, an excessively large γ would cause the loss

contribution of high bits to dominate the angle loss. For ex-

ample, when γ = 1, EOM weighting to different bits of 8-ary

POE coding is {83, 82, 1}, which would cause the lower bits to

be almost ignored. As a result, it in turn leads to sharp angular
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Figure 10: Curves of (a) different f(∆θ) in AOM function and (b) the corre-

sponding gradient.

errors and inferior accuracy.

Comparison with related methods. We compare the proposed

POE strategy with other angle classification methods, and the690

results are shown in Table 7. ‘Reg’ is the baseline model that

adopts angle regression to predict orientation of objects. It

achieves AP50:90 and mAOE of 52.54% and 6.81◦, respectively.

‘OneHot’[41] method divides angle range into 180 significant

conditions equally, and adopts one-hot labels to represent the

orientation. We suggest that too many angle classes make clas-

sification branch hard to converge, therefore it achieves infe-

rior performance compared with baseline. CSL[22] introduces

error tolerance for adjacent angle classes into one-hot labels,

which improve AP50:90 by 1.44% and mAOE by 2.43◦. How-700

ever, these two methods introduce a heavy classification head,

resulting in a sharp increase in parameters and computational

complexity of the model. Recent BCL and GCL [30] use larger

interval division to reduce computational cost, but their detec-

tion performance is inferior to CSL. Our POE strategy achieves

significant performance gains by introducing a small computa-

tional cost. It achieves AP50:90 of 54.62% and mAOE of 4.08◦,

which is the best among the compared methods.

Evaluation of different AOMs. We compare the performance

of different AOM candidates, and the experimental results are710

shown in Table 8. The AOM consists of f(∆θ) and g(r), which

introduce angular error and aspect ratio information into angle

loss, respectively. g(r) improves the loss contribution of large

aspect ratio objects, and thus increases AP50:90 by 0.17%, and
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Table 7: Comparison with other angle classification methods.

Methods Param.(M) ∆Param. GFLOPS ∆GFLOPS AP50:90 mAOE

Reg 7.25779 —— 16.82426 —— 52.54 6.81

OneHot[41] 7.74055 +6.65% 18.37297 +9.21% 47.12 7.12

GCL[30] 7.26318 +0.07% 16.84157 +0.11% 50.67 6.95

BCL[30] 7.26318 +0.07% 16.84157 +0.11% 53.06 5.34

CSL[22] 7.74055 +6.65% 18.37297 +9.21% 53.98 4.38

POE (ours) 7.27937 +0.29% 16.89348 +0.41% 54.62 4.08

Figure 11: Detection results on HRSC2016 dataset.

Table 8: Performance evaluation of different AOMs.

f(∆θ) g(r) AP50:90 mAOE

—— —— 53.35 5.06

—— ln(r + e− 1) 53.52 4.83

0.5∆θ2 ln(r + e− 1) 53.69 4.92

1− cos(0.5∆θ) ln(r + e− 1) 53.88 4.75

∆θ − sin∆θ ln(r + e− 1) 54.21 4.63

improves mAOE by 0.23◦. Furthermore, we compared the per-

formance of different f(∆θ). All candidate of f(∆θ) satisfy

Property 2 and Property 3 in Section 3.3.2, that is, both f(∆θ)

and its gradient are monotonically increasing with angular er-

ror (as shown in Fig. 10). Among them, f(∆θ) = ∆θ− sin∆θ

achieves AP50:90 of 54.21% and mAOE of 4.63%, which is the720

best among compared functions.

5.2. Comparison with state-of-the-art methods

5.2.1. Results on HRSC2016

The HRSC2016 dataset [17] contains a large number of re-

mote sensing ships with large aspect ratios. We compare the

performance of state-of-the-art methods on HRSC2016 dataset.

As shown in Table 9, TIOE-Det achieves the mAP of 90.16%,

(a) UCAS-AOD

(b) UAV-ROD

Figure 12: Illustrations of detections on (a)UCAS-AOD dataset and (b) UAV-

ROD daataset.

which is the best performance among the compared methods.

POE strategy helps to accurately predict the orientation of ships

with large aspect ratios, while PHA scores allows for confident730

selection of high-quality detections. Some detection results are

shown in Fig. 11.
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Table 9: Comparisons with other methods on HRSC2016 dataset.

Methods Type Size mAP

RRPN [21] two-stage 800×800 79.08

R2PN [42] two-stage — 79.60

RetinaNet [16] one-stage 416×416 80.81

RRD [43] one-stage 384×384 84.30

RoI Trans. [20] two-stage 512×800 86.20

RSDet [44] one-stage 800×800 86.50

Gliding Vertex [9] two-stage 512×800 88.20

OPLD [45] two-stage 1024×1333 88.44

DAL [24] one-stage 416×416 88.95

R3Det [7] one-stage 800×800 89.26

DCL [30] one-stage 800×800 89.46

RIDet [12] one-stage 800×800 89.63

CFC-Net [8] one-stage 800×800 89.70

GWD [11] one-stage 800×800 89.85

AProNet [46] two-stage 512×800 90.03

TIOE-Det (Ours) one-stage 800×800 90.16

Table 10: Comparisons with different methods on UCAS-AOD dataset.

Methods Size Car Airplane mAP

YOLOv3 [6] 800 74.63 89.52 82.08

RetinaNet [16] 800 84.64 90.51 87.57

FR-O [36] 800 86.87 89.86 88.36

RoI Transformer [20] 800 87.99 89.90 88.95

RIDet [12] 800 88.50 89.96 89.23

SLA [13] 800 88.57 90.30 89.44

TIOE-Det(ours) 800 88.83 90.15 89.49

5.2.2. Results on UCAS-AOD and UAV-AOD

UCAS-AOD[39] and UAV-ROD[40] are aerial image

datasets with OBB annotations. We conducted experiments on

the two datasets, and experimental results are shown in Table

10 and Table 11. UCAS-AOD [39] contains a large number of

small-scale cars that are difficult to detect. TIOE-Det achieves

accurate car detection with an AP of 88.83%, which is the best

among the compared methods. Noting that the detection perfor-740

mance of airplane is slightly lower than that of RetinaNet[16],

we suggest that airplanes are annotated with square-like boxes,

and thus the POE strategy does not bring a significant perfor-

Table 11: Comparisons with different methods on UAV-ROD dataset.

Methods AP AP75 AP50

RetinaNet [16] 71.46 85.88 97.68

Faster R-CNN [3] 75.79 86.38 98.07

TS4Net [40] 76.75 88.17 98.10

TIOE-Det(ours) 77.93 89.64 97.89

Figure 13: Illustrations of some detections on DIOR-R dataset.

mance gain. UAV-ROD [40] is a recent dataset of drone aerial

imagery. AP here denotes average precision over different IoU

thresholds, from 0.50 to 0.95, step 0.05. AP50 of our method

is slightly inferior to models such as TS4Net[40]. We suggest

that our method focuses more on improving high-precision de-

tection performance. As a result, TIOE-Det achieves the AP of

77.93% and AP75 of 89.64%, which are the best performance750

among compared models. Some detection results on UCAS-

AOD and UAV-ROD are shown in Fig. 12.

5.2.3. Results on DIOR-R

DIOR dataset[38] is a large-scale public dataset for object

detection in remote sensing images. DIOR-R shares the same

image with the original version DIOR and introduces additional

oriented bounding box annotations. As shown in Table 12,
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Table 12: Comparison with other models on DIOR dataset.

Methods APL APO BF BC BR CH ESA ETS DAM GF GTF HA OP SH STA STO TC TS VE WM mAP

RetinaNet[16] 61.49 28.52 73.57 81.17 23.98 72.54 58.20 72.39 19.94 69.25 79.54 32.14 44.87 77.71 67.57 61.09 81.46 47.33 38.01 60.24 57.55

IoU loss[47] 62.73 22.62 75.96 81.40 24.30 72.68 75.70 59.11 21.63 77.02 79.34 37.33 38.79 69.96 72.53 59.06 81.46 46.57 37.54 62.54 57.91

DAL[24] 62.70 25.42 71.77 80.92 34.88 72.63 69.07 60.52 22.15 68.23 76.71 39.81 48.66 80.91 72.83 62.19 81.27 48.67 42.60 62.77 59.24

Faster RCNN[3] 62.79 26.80 71.72 80.91 34.20 72.57 65.75 66.45 18.95 66.63 79.24 34.95 48.79 81.14 64.34 71.21 81.44 47.31 50.46 65.21 59.54

Gliding Vertex[9] 65.35 28.87 74.96 81.33 33.88 74.31 64.70 70.72 19.58 72.30 78.68 37.22 49.64 80.22 69.26 61.13 81.49 44.76 47.71 65.04 60.06

RIDet[12] 62.90 32.43 77.58 81.09 37.27 72.58 76.17 64.95 24.42 55.22 81.12 43.61 50.88 81.05 73.16 60.45 81.49 49.02 43.35 62.48 60.56

CFC-Net[8] 64.94 33.43 75.16 81.25 36.14 71.75 70.13 63.57 18.01 68.15 80.82 41.58 52.30 80.95 68.72 69.61 83.73 47.06 47.91 57.86 60.65

TIOE-Det 68.65 28.62 76.68 84.76 39.32 72.35 72.66 63.87 20.36 75.19 77.41 40.63 47.48 82.61 72.58 70.33 81.93 47.86 52.06 64.24 61.98

Table 13: Performance comparison with state-of-the-arts on the DOTA dataset. The items with red and blue colors indicate the best and second-best results of each

column, respectively. ‘Ms’ means using multi-scale training and testing.

Methods Ms PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR-O[36] 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30 52.93

ICN[48] ✓ 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

RoI Trans.[20] ✓ 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

CAD-Net[49] ✓ 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

SCRDet[19] ✓ 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

Gliding Vertex[9] 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

Mask OBB[50] ✓ 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33

CenterMap-Net[51] ✓ 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

CSL[22] ✓ 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

OPLD[45] ✓ 89.37 85.82 54.10 79.58 75.00 75.13 86.92 90.88 86.42 86.62 62.46 68.41 73.98 68.11 63.69 76.43

Tw
o

St
ag

e

AProNet[46] ✓ 88.77 84.95 55.27 78.40 76.65 78.54 88.45 90.83 86.56 87.01 65.62 70.29 75.43 78.17 67.28 78.16

PIoU[35] 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50

CFC-Net[8] ✓ 89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50

R3Det[7] ✓ 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47

DAL[24] 89.69 83.11 55.03 71.00 78.30 81.90 88.46 90.89 84.97 87.46 64.41 65.65 76.86 72.09 64.35 76.95

SLA[13] ✓ 88.33 84.67 48.78 73.34 77.47 77.82 86.53 90.72 86.98 86.43 58.86 68.27 74.10 73.09 69.30 76.36

DCL[30] ✓ 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37

GWD[11] ✓ 89.06 84.32 55.33 77.53 76.95 70.28 83.95 89.75 84.51 86.06 73.47 67.77 72.60 75.76 74.17 77.43

RIDet[12] ✓ 89.31 80.77 54.07 76.38 79.81 81.99 89.13 90.72 83.58 87.22 64.42 67.56 78.08 79.17 62.07 77.62

RDD[] ✓ 89.15 83.92 52.51 73.06 77.81 79.00 87.08 90.62 86.72 87.15 63.96 70.29 76.98 75.79 72.15 77.75

KLD[14] ✓ 88.91 85.23 53.64 81.23 78.20 76.99 84.58 89.50 86.84 86.38 71.69 68.06 75.95 72.23 75.42 78.32

O
ne

St
ag

e

TIOE-Det(ours) ✓ 89.76 85.23 56.32 76.17 80.17 85.58 88.41 90.81 85.93 87.27 68.32 70.32 68.93 78.33 68.87 78.69
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Figure 14: Visualization of detections on DOTA dataset.

Figure 15: Detection results on FAIR1M dataset.

TIOE-Det achieves the mAP of 61.98%, which outperforms

many existing methods. Some detections results on DIOR-R

are shown in Fig. 13.760

5.2.4. Results on DOTA

DOTA[36] is the most commonly used datasets for oriented

object detection in remote sensing images. We have reported

detection performance of our model on DOTA in Table 13.

TIOE-Det achieves the mAP of 78.69%, which outperforms

many recent state-of-the-art methos such as AProNet[46].

Some detections on DOTA dataset are visualized in Fig. 14. Our

model achieves superior performance on categories with large

aspect ratios and densely arranged objects, such as bridge(BR),

small vehicle(SV), large vehicle(LV). It shows that TIOE-Det770

achieves accurate orientation prediction and provides reliable

high-precision detections.

5.2.5. Results on FAIR1M

FAIR1M is a recent large-scale dataset for fine-grained object

detection in remote sensing imagery. Many classes have high

inter-class similarity, such as Boeing 737, Boeing 747, Boe-

ing 777. It is a challenging task to detect objects and identify

their categories. For a fair comparison, we reproduce some ad-

vanced detectors on FAIR1M dataset in Table 14. Generally,

the current two-stage detectors adopt RoI align[53] to extract780

discriminative features, which greatly improves the accuracy of

fine-grained object recognition. Therefore, two-stage detectors

in Table 14 (Faster RCNN[3], RoI Transformer[20], Gliding

Vertex[9]) achieve better performance than one-stage detectors

(such as FCOS[52], CFC-Net[8]). TIOE-Det achieves the mAP

of 35.16%, which outperforms the compared one-stage detec-

tors and even some two-stage detectors in Table 14. After using

multi-scale training and testing, our method achieves the mAP

of 43.87%. Visualization of some detection results is shown in

Fig. 15.790

5.3. Analysis and Discussion

Our TIOE-Det achieves state-of-the-art performance on mul-

tiple datasets. The modules we propose, PHA label, BAL, POE

coding, and ADW strategy achieve stable performance gains.

Specifically, it can be seen from Fig. 8 and Table Tab. 1 that the

PHA label greatly improves the performance of high-precision
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Table 14: Comparison with some recent models on FAIR1M dataset. The items with red and blue colors indicate the best and second-best results of each column,

respectively. * denotes using multi-scale training and testing.

Method FCOS[52] RetinaNet[16] DAL[24] RIDet[12] Faster RCNN[3] CFC-Net[8] Gliding Vertex[9] RoI Trans.[20] TIOE-Det TIOE-Det∗

mAP 23.70 27.67 29.00 31.58 33.70 34.31 35.86 38.27 35.16 43.87

Boeing 737 10.34 35.01 32.53 28.25 36.05 30.89 36.32 35.84 37.62 41.65

Boeing 747 43.54 83.72 74.39 80.62 85.19 83.87 82.61 82.74 86.71 85.39

Boeing 777 5.96 12.64 13.14 12.92 12.45 10.72 11.29 12.81 11.06 17.53

Boeing 787 13.67 36.68 39.91 45.28 45.35 38.60 48.69 43.90 46.32 48.53

C919 0.00 1.44 2.11 0.15 15.45 5.67 24.48 15.77 0.00 24.32

A220 11.71 45.44 41.32 39.89 49.50 42.44 50.01 48.68 48.75 45.92

A321 3.95 64.95 58.38 53.69 63.16 50.68 65.27 67.35 68.49 70.21

A330 15.03 58.52 44.59 62.80 65.89 55.13 69.98 65.56 72.51 63.09

A350 14.20 71.45 54.88 55.27 62.69 59.20 65.18 62.92 78.19 77.21

ARJ21 13.75 3.60 1.57 8.53 31.25 5.30 33.24 33.60 8.62 45.32

passenger ship 10.65 3.83 9.90 6.11 6.24 7.19 8.92 15.20 3.73 12.96

motorboat 46.21 22.03 53.04 55.20 44.37 63.38 52.04 58.04 58.45 65.39

fishing boat 9.59 2.12 5.71 5.49 3.71 8.72 5.11 9.37 5.12 10.29

tugboat 19.81 13.34 21.08 30.15 26.05 19.70 28.49 30.17 30.51 29.85

engineering ship 13.24 9.11 7.11 5.84 6.88 7.67 9.73 10.87 10.38 11.21

liquid cargo ship 12.92 4.37 12.05 17.21 9.50 21.23 15.67 19.28 5.56 24.00

dry cargo ship 35.08 14.49 28.41 29.58 17.78 30.54 26.75 33.02 18.71 36.01

warship 20.75 3.81 11.91 14.47 6.37 23.21 13.67 24.90 2.52 32.35

small car 42.56 41.91 48.05 52.73 51.44 62.43 49.53 57.73 65.89 74.86

bus 15.55 5.55 7.71 15.27 21.00 34.50 22.04 31.23 4.73 53.31

cargo truck 31.72 20.69 25.04 30.32 32.89 41.15 36.69 42.46 36.29 49.93

dump truck 23.90 16.54 22.82 29.50 40.04 42.18 39.52 45.26 41.31 55.78

van 34.59 34.09 43.26 45.01 45.96 51.65 43.65 54.49 65.89 75.08

trailer 12.14 0.33 2.48 3.82 7.82 11.41 11.65 15.54 0.53 19.62

tractor 1.07 0.36 1.03 0.05 3.77 1.69 2.90 3.55 0.18 4.00

excavator 7.90 0.52 5.06 5.03 9.28 10.26 12.49 12.78 9.83 16.62

truck tractor 1.09 0.01 0.55 0.53 1.71 0.71 3.66 2.59 0.10 2.18

basketball court 23.09 22.28 38.76 37.47 39.92 40.21 39.85 42.87 50.23 50.90

tennis court 74.76 78.62 75.37 77.78 76.97 79.41 76.98 78.40 80.23 83.97

football field 49.64 59.46 46.10 52.69 52.36 58.01 50.79 59.30 60.70 65.29

baseball field 82.90 86.46 84.66 85.63 87.56 84.34 86.85 86.60 88.57 85.96

intersection 55.14 57.33 44.06 51.41 57.11 51.98 58.59 58.18 65.07 63.36

roundabout 26.46 20.30 13.96 17.05 22.28 18.22 20.49 19.34 21.02 21.50

bridge 22.79 9.89 15.08 17.96 7.75 14.31 16.21 20.76 11.94 28.01
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object detection. We suggest that PHA label efficiently selects

high-quality predictions, thereby avoiding the inconsistency be-

tween classification scores and localization accuracy during in-

ference. BAL alleviates the imbalance problem in PHA predic-800

tion for better performance.

The proposed POE strategy solves the periodicity of angle

prediction. However, it introduces the inaccurate angular dis-

tance measurement. Therefore, AWD strategy applies AOM

and EOM to calculate the angle deviation during training. As

shown in Table 5, the ADW strategy significantly reduces the

angle prediction error, thereby improving the high-precision de-

tection performance. Also, the flexible POE coding allows for

a trade-off between accuracy and speed of the model as shown

in Tab. 6 and Tab. 7.810

6. Conclusion

High-precision oriented object detection has always been a

challenging task. Current mainstream rotation detectors suf-

fer from unreliable detection results and inaccurate orienta-

tion prediction. In this paper, we design TIOE-Det for high-

precision object detection in remote sensing images. TIOE-Det

employs two novel modules: posterior hierarchical alignment

(PHA) branch and progressive direction estimation (POE) strat-

egy. Specifically, PHA branch predicts PHA score based on

localization accuracy for high-quality detection selection. The820

POE strategy discretizes the object orientation and adopts inter-

pretable progressive coding to represent orientation of the tar-

get. Furthermore, we designed a balanced alignment loss and

an angular deviation weighting strategy during loss calculation

for two proposed module. TIOE-Det achieves superior perfor-

mance on multiple publicly available remote sensing datasets.

Extensive experimental results demonstrate the effectiveness of

our method.
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