
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

CFC-Net: A Critical Feature Capturing Network for
Arbitrary-Oriented Object Detection in

Remote-Sensing Images
Qi Ming , Lingjuan Miao , Zhiqiang Zhou , Member, IEEE, and Yunpeng Dong

Abstract— Object detection in optical remote-sensing images is
an important and challenging task. In recent years, the methods
based on convolutional neural networks (CNNs) have made good
progress. However, due to the large variation in object scale,
aspect ratio, as well as the arbitrary orientation, the detection
performance is difficult to be further improved. In this article,
we discuss the role of discriminative features in object detection,
and then propose a critical feature capturing network (CFC-Net)
to improve detection accuracy from three aspects: building
powerful feature representation, refining preset anchors, and
optimizing label assignment. Specifically, we first decouple the
classification and regression features, and then construct robust
critical features adapted to the respective tasks of classification
and regression through the polarization attention module (PAM).
With the extracted discriminative regression features, the rotation
anchor refinement module (R-ARM) performs localization refine-
ment on preset horizontal anchors to obtain superior rotation
anchors. Next, the dynamic anchor learning (DAL) strategy is
given to adaptively select high-quality anchors based on their
ability to capture critical features. The proposed framework
creates more powerful semantic representations for objects in
remote-sensing images and achieves high-performance real-time
object detection. Experimental results on three remote-sensing
datasets including HRSC2016, DOTA, and UCAS-AOD show that
our method achieves superior detection performance compared
with many state-of-the-art approaches. Code and models are
available at https://github.com/ming71/CFC-Net.

Index Terms— Convolutional neural networks (CNNs), critical
features, deep learning, object detection.

I. INTRODUCTION

OBJECT detection in optical remote-sensing images is
a vital computer vision technique which aims at clas-

sifying and locating objects in remote-sensing images. It is
widely used in crop monitoring, resource exploration, envi-
ronmental monitoring, military reconnaissance, etc. With the
explosive growth of available remote-sensing data, identifying
objects of interest from massive amounts of remote-sensing
imagery has gradually become a challenging task. Most of
the traditional methods use handcrafted features to identify
objects [1]–[5]. Although much progress has been made, there
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are still problems such as low efficiency, insufficient robust-
ness, and poor performance.

In recent years, the development of convolution neural
networks (CNNs) has greatly improved the performance of
object detection. Most CNN-based detection frameworks first
extract features through convolution operation, and then pre-
set a series of prior boxes (anchors) on the feature maps.
Subsequently, classification and regression are performed on
these anchors to obtain the bounding boxes of objects. The
powerful ability to automatically extract features of CNN
makes it possible to achieve promising object detection on
massive images. Currently, the CNN-based models have been
widely used in the object detection in remote-sensing images,
such as road detection [6], vehicle detection [7], [8], airport
detection [9], and ship detection [10], [11].

Although CNN-based approaches have made good progress,
they are often directly derived from generic object detection
frameworks. It is difficult for these methods to detect objects
with a wide variety of scales, aspect ratios, and orientations
in remote-sensing images. For example, the orientation of
objects varies greatly in remote-sensing imagery, while the
mainstream generic detectors utilize predefined horizontal
anchors to predict these rotated ground-truth (GT) boxes. The
horizontal boxes often contain a lot of background which may
mislead the detection. There are some approaches that use
rotated anchors to locate arbitrary-oriented objects [12]–[19],
but it is hard for rotation anchors to achieve good spatial
alignment with GT boxes, and they cannot ensure to provide
sufficiently good semantic information for classification and
regression.

Some recent researches address the above problems by
designing more powerful feature representations [17], [18],
[20]–[23]. However, they only focus on a certain type of char-
acteristics of remote-sensing targets, such as rotation invariant
features [20], [21] and scale sensitive features [22], [23]. They
cannot automatically extract and utilize more complex and
discriminative features. Another commonly used method is
to manually set a large number of anchors covering different
aspect ratios, scales, and orientations to achieve better spatial
alignment with targets. In this way, sufficient high-quality
anchors can be obtained and better performance can be
achieved. Excessive preset anchors, however, bring about three
problems: 1) most anchors are backgrounds that cannot be
used for bounding box regression, which leads to severely
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Fig. 1. Illustration of the role of critical features in classification task.
Predicted bounding boxes (green) are regressed from predefined anchor boxes
(red). The ground truth classes of (a) and (b) are marked as A and B,
respectively, while the predicted object categories are all A. Only the anchors
that capture the critical features required to identify the object (such as island
and bow here) can achieve the correct classification.

redundant calculation; 2) the parameters of the prior anchors
need to be careful manually set, otherwise they would not
obtain good alignment with GT boxes; and 3) there are a large
number of low-quality negative samples in the excessive laid
anchors which are not conducive to network convergence. The
above-mentioned issues lead to the fact that densely preset
anchors are still unable to effectively handle the difficulties of
remote-sensing object detection.

To figure out how the complex variabilities of remote-
sensing objects make it difficult to achieve high-performance
detection, in this article we introduce the essential concept
named critical features, referring to the discriminative features
required for accurate classification or localization. Taking the
classification task as an example, most anchor-based detectors
treat the anchors in Fig. 1(a) and (b) as positive samples,
due to that the Intersection-over-Union (IoU) between these
anchors and GT boxes is higher than 0.5. But the anchor
in Fig. 1(b) does not capture the discriminative features of the
island and bow which are critical for precise ship classification.
Although this anchor achieves accurate localization, it leads
to incorrect classification results, thereby degrading detec-
tion performance. Furthermore, by visualizing the features
extracted by CNN, it is found that the critical features for
classification and regression are not always evenly distributed
on the object, but may be on local areas such as the bow
and stern [see Fig. 2(a) and (b)]. The preset anchors need to
capture these critical features to achieve accurate detection.
This is similar to the conclusion of some previous work [10],
[24]. However, the mainstream rotation detectors tend to
select anchors with high IoU with GT boxes as positives,
but ignore high-quality anchors that contain critical features,
which eventually leads to the unstable training process and
poor performance. The statistics given in Fig. 2(c) supports
this viewpoint. It can be seen that only 74% of positive anchors

Fig. 2. Analysis of the importance of critical features. (a) and (b) Discrim-
inative feature activation map in object detection. (c) Proportion of positive
samples with high-quality detections among all positives. (d) Proportion of
high-quality detections that regressed from negatives.

can achieve high-quality detection (with output IoU larger than
0.5) after regression, which indicates that even the positive
anchors still cannot guarantee precise localization. We attribute
this phenomenon to the fact that some of the selected positives
do not capture the critical features required by the regression
task. Besides, as shown in Fig. 2(d), surprisingly more than
half of the anchors (about 58% in this case) that achieve
accurate detection are regressed from the samples that are
recognized as negatives. It means that a large number of
negative anchors capture the critical features well but have not
been effectively utilized at all. The inconsistency between the
training sample division and the regression results will further
lead to a gap between the classification scores and localization
accuracy in the detection. Based on the above observations,
we conclude that one of the key issues for object detection
in remote-sensing imagery is whether the anchors can capture
the critical features of the objects.

In this article, based on the viewpoint discussed above,
the critical feature capturing network (CFC-Net) is pro-
posed to achieve high-performance object detection in optical
remote-sensing imagery. Specifically, CFC-Net first uses a
well-designed polarization attention module (PAM) to generate
different feature pyramids for classification and regression
tasks, and then we can obtain task-specific critical features that
are more discriminative and easy-to-capture. Next, the rota-
tion anchor refinement module (R-ARM) refines the preset
horizontal anchors to better capture the regression critical
features to obtain high-quality rotation anchors. Finally, in the
training process, the dynamic anchor learning (DAL) strategy
is adopted to select the high-quality anchors that capture
critical features as positives to ensure superior detection per-
formance after training. Due to the proper construction and
utilization of critical features, CFC-Net achieves the state-of-
the-art detection performance using only one anchor, which
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makes it became a both high-performance and memory-saving
method. The code is available to facilitate future research.

The contributions of this article are summarized as follows.

1) We point out the existence of critical features through
experiments, and interpret common challenges for object
detection in remote-sensing imagery from this perspec-
tive. A novel object detection framework CFC-Net is
then proposed to capture the critical features to achieve
superior detection performance.

2) Polarized attention is proposed to construct task-specific
critical features. Decoupled critical features provide
more useful semantic information for individual tasks,
which is beneficial to accurate classification and
regression.

3) The dynamic anchor selection (DAS) strategy selects
high-quality anchors that capture the critical regression
features to bridge the inconsistency between classifi-
cation and regression, and thus greatly improves the
performance of detection.

The rest of this article is organized as follows. Section II
introduces the related work of object detection. Section III
elaborates on the proposed method. Section IV provides the
experimental results and analysis. Finally, conclusions are
drawn in Section V.

II. RELATED WORK

Object detection in remote-sensing images has a wide range
of application scenarios and has been receiving extensive
attention in recent years. Most of the early traditional methods
use handcraft features to detect remote-sensing objects, such
as shape and texture features [1], [4], [5], scale-invariant
features [2], and saliency [3]. For instance, Zhu et al. [4]
achieves accurate ship detection based on shape and texture
features. Eikvil et al. [5] utilizes spatial geometric properties
and gray level features for vehicle detection in satellite images.
These approaches have achieved satisfactory performance for
specific scenes, but their low efficiency and poor generalization
make it hard to detect objects in complex scenarios.

Recently, with the great success of CNNs, generic object
detection has been strongly promoted. Mainstream CNN-based
object detection methods can be classified into two categories:
one-stage detectors and two-stage detectors. The two-stage
detectors first generate a series of proposals, and then perform
classification and regression on these regions to obtain the
detection results [25]–[27]. These algorithms usually have high
accuracy but slow inference speed. The one-stage detectors,
such as the YOLO series [28]–[30] and SSD [31], directly
conduct classification and regression on the prior anchors with-
out region proposal generation. Compared with the two-stage
detectors, one-stage methods have relatively low accuracy, but
are faster and can achieve real-time object detection.

Deep learning methods have been widely used in object
detection in remote-sensing images. A series of CNN-based
approaches have been proposed and achieved good perfor-
mance. However, some methods are directly developed from
the generic object detection framework [22], [32], which
detect objects with horizontal bounding box. It is hard for the

horizontal box to distinguish densely arranged remote-sensing
targets and is prone to misdetection. To solve this problem,
some studies introduced an additional orientation dimension
to achieve the oriented object detection [12]–[14]. For exam-
ple, Liu et al. [12] integrates the angle regression into the
YOLOv2 [29] to detect rotated ships. R2PN [13] detects
rotated ships by generating oblique region of interest (RoI).
RR-CNN [14] uses the rotated RoI pooling layer, which makes
the RoI feature better aligned with the orientation of the object
to ensure accurate detection. However, to have a higher overlap
with the rotated objects, these methods preset densely arranged
rotation anchors. Most of the anchors have no intersection
with the targets, which brings a lot of redundant computation
and the severe imbalance problem. Some work alleviates the
issue by setting fewer anchors but still maintaining detec-
tion performance [15], [33]. RoI Transformer [15] adopts
horizontal anchors to learn the rotated RoI through spatial
transformation, so that a few horizontal anchors can work
well for oriented object detection. R3Det [33] achieves state-
of-the-art performance through cascade regression, in which
feature alignment is performed on horizontal anchors. Despite
the success of these methods, it is still difficult for hori-
zontal anchors to accurately detect the rotation objects and
the number of preset anchors is still large. Different from
the previous work, our CFC-Net uses only one anchor for
faster inference and achieves high-quality rotation object
detection.

There are also some methods trying to construct bet-
ter feature representation to alleviate the difficulty caused
by large scale, shape, and orientation variations [16],
[18]–[21], [23], [34], [35]. For instance, Li et al. [19] proposed
a local-contextual feature fusion model to build powerful
joint representations for object detection in remote-sensing
images. ORN [21] performs feature extraction through the
rotated convolution kernel to achieve rotation invariance.
RICNN [20] optimizes the feature representation by learning
a rotation-invariant layer. FMSSD [23] aggregates the context
information in different scales to cope with the multi-scale
objects in large-scale remote-sensing imagery. Li et al. [16]
proposed a shape-adaptive pooling to extract the features
of the ships with various aspect ratios, and then multilevel
features are incorporated to generate a compact feature rep-
resentation for ship detection. RRD [17] observes that shared
features degrade performance due to the incompatibility of
the classification and regression tasks. To solve the problem,
the rotation-invariant and rotation-sensitive features are con-
structed for classification and regression tasks, respectively.
The current work only pays attention to a certain aspect
of the object characteristics, and cannot comprehensively
cover the discriminative features required for object detection.
According to the analysis in Section I, we believe that the
detection performance largely depends on whether the prior
anchors effectively capture these critical features, not limited
to the rotation-invariant features or scale-invariant features.
Therefore, the clear and powerful critical feature represen-
tation is very important for object detection. The proposed
CFC-Net extracts and utilizes task-sensitive critical features
for classification and regression tasks respectively, so that the
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Fig. 3. Framework of the proposed CFC-Net.

detector can obtains substantial performance improvements
from the more discriminative critical feature representation.

III. PROPOSED METHOD

The overall structure of CFC-Net is shown in Fig. 3.
We uses ResNet-50 as the backbone network. First, we build
multi-scale feature pyramids through feature pyramid network
(FPN) [36], and then the decoupled features that are sensitive
to classification and regression are generated through the
proposed PAM. Subsequently, anchor refinement is conducted
via R-ARM to obtain the high-quality rotation candidates
based on the critical regression features. Finally, DAL strategy
dynamically selects anchors that capture critical features for
regression. In this way, the inconsistency between classifi-
cation and regression can be alleviated and the detection
performance can be improved. The details of the proposed
CFC-Net are elaborated below.

A. Polarization Attention Module

In most object detection frameworks, both classification and
regression rely on the shared features. However, as mentioned
in [17] and [37], the shared features degrade performance
owing to the incompatibility between the two tasks. For exam-
ple, the classification branch is supposed to have the rotation
invariance for different angles, while the regression branch
of detectors should be sensitive to the change of the angle
so as to achieve accurate orientation prediction. Therefore,
rotation-invariant features are beneficial to classification task,
but it is not conducive to bounding box regression.

We propose PAM to avoid the feature interference between
different tasks and effectively extract the task-specific critical
features. The overall structure of PAM is shown in Fig. 4.
First, we build separate feature pyramids for different tasks,

which is called dual FPN. Next, a well-designed polarization
attention mechanism is applied to obtain the enhanced feature
representation. Through the polarization function, different
branches generate the discriminative features required for
respective tasks. Specifically, for classification, we tend to
select high-response global features to reduce noise interfer-
ence. For regression, we pay more attention to the features of
object boundaries and suppress the influence of irrelevant high
activation regions.

Given the input feature F ∈ R
C×H×W , we construct

task-sensitive features as follows:
M = Mc(F)⊗ Ms(F)

F′ = M + ψ(σ(M))� F + F (1)

where ⊗ and � represent tensor product and element-wise
multiplication, respectively. σ denotes sigmoid function. First,
we extract channel-wise attention map Mc and spatial attention
map Ms from input features through convolution operations.
The purpose of channel attention is to extract the channel-wise
relationship of the feature maps. The weight of each channel is
extracted by global average pooling and fully connected layers
as follows:

Mc(F) = σ
(
W1

(
W0

(
Fgap

)))
(2)

where Fgap is obtained from input feature F via global average
pooling, W0 ∈ R

C/r×C and W1 ∈ R
C×C/r are the weights of

the fully connected layers.
Besides, spatial attention is used to model the dependencies

between pixels of the input image. The formula is as follows:
Ms(F) = σ

(
c3×3

(
cat

((
c3×3, c1×3

d , c3×1
d , c3×3

d

)
(F)

)))
(3)

in which c3×3 represents convolution of 3 × 3 filters.
c1×3

d , c3×1
d , c3×3

d respectively denote dilated convolution of
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Fig. 4. Illustration of the PAM module. SA denotes spatial attention and CA represents channel-wise attention.

different kernel sizes, and their dilation rates are 2. Cat denotes
concatenation of features. Dilated convolution is adopted here
to expand the receptive field of the convolution kernels. At the
same time, convolution kernels with different aspect ratios are
used to better detect slender objects such as ships and bridges.

Next, the attention response map M for a specific task is
obtained by multiplying the two attention maps. On this basis,
we build the powerful task-sensitive critical feature represen-
tation through the task-specific polarization function ψ(·). For
classification, the features are expected to pay more attention
to the high-response part on feature maps, and ignore the part
of less important clues which may be used for localization or
may bring interference noise. We use the excitation function
as follows:

ψcls(x) = 1

1 + e−η(x−0.5)
(4)

where η is the modulation factor used to control the intensity
of feature activation (set to 15 in our experiment). The
high-response area of critical classification features is enough
to achieve accurate classification, there is no need to pursue too
much information. Consequently, the effect of high-response
critical classification features is excited, while irrelevant fea-
tures with attention weight less than 0.5 are suppressed.
In this way, the classifier is able to pay less attention to the
difficult-to-classify areas and reduce the risk of overfitting and
misjudgment.

Meanwhile, for the regression branch, the critical features
are often scattered on the edges of object. We expect that
the feature maps focus on as many visual clues as possible
for object localization, such as object contours and contextual

information. To this end, we use the following depression
function to process the input features:

ψreg(x) =
{

x, if x < 0.5

1 − x, otherwise.
(5)

Different from the classification task, a strong response to
a patch of the object edge is not conducive to locating the
entire object. In (5), the depression function suppresses the
area with the high response in the regression feature, which
enforces the model to seek potential visual clues to achieve
accurate localization. The curves of polarization function ψ(·)
are shown in Fig. 4.

Finally, the polarization attention weighted features are
combined with the original features to extract the enhanced
critical features. As described in (1), the attention weighted
features, the input features F, and the attention response
map M are merged by element-wise summation to obtain
powerful feature representations for accurate object detection.
The proposed PAM greatly improves detection performance
via optimizing the representation of critical features. The
explainable visualization results are shown in Fig. 5. It can be
seen that PAM effectively extracts the critical features required
for different tasks. For example, the extracted regression
critical features are evenly distributed on the object, which is
helpful to identify the object boundary and accurately localize
the target. The classification critical features are concentrated
more on the most recognizable part of an object to avoid
interference from other parts of the object, and thus the
classification results will be more accurate.
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Fig. 5. Illustration of function of the proposed modules in the detection pipeline. The yellow area represents the center of the high-quality anchors.

Fig. 6. Illustration of the R-ARM module. A denotes the number of anchors
preset at each position of feature map, which is set to 1 in CFC-Net. Red
boxes are the positive samples for anchor refinement.

B. Rotation Anchor Refinement Module

In the existing anchor-based object detectors, classification
and regression are performed on densely preset anchors. It is
difficult to achieve alignment between anchors and rotation
objects owing to the large variation in the scale and orientation
of the remote-sensing objects. To solve this problem, we pro-
posed a R-ARM to generate high-quality candidates based on
critical regression features with less reliance on the prior geo-
metric knowledge of anchors. Given the regression-sensitive
feature maps extracted by PAM, R-ARM refines the initial
anchors to obtain the rotated anchors that better align with the
critical regression features. The regions of these high-quality
anchors capture the discriminative and semantic features of the
object boundary, which helps to achieve accurate localization.

The architecture of R-ARM is shown in Fig. 6. It is stacked
by three convolutional layers with 3 × 3 convolution kernels.
The first two convolutional layers contains 256 filters in
each layer to extract the anchor refining features from the
input regression features. The last one predicts the objects
at each location on the feature maps. We preset A initial

horizontal anchors at each position of the feature map, which
are represented as (xa, ya, wa, ha, θa). (xa, ya) are the center
coordinates, and wa, ha denote the width and height of the
anchors, respectively. θa = 0 for the preset horizontal anchors.
R-ARM regresses the angle θ and the box offsets of the prior
anchors to get the rotation candidates which are expressed as
(x, y, w, h, θ). R-ARM enables anchors to generate refined
rotated boxes that are well aligned with the GT objects,
and would help to capture more critical features for subse-
quent detection layers. Specifically, we predict offsets t r =
(tx , ty, tw, th, tθ ) for anchor refinement, which are represented
as follows:

tr
x = (

x − xa
)
/wa, tr

y = (
y − ya

)
/ha

tr
w = log

(
w/wa

)
, tr

h = log
(
h/ha

)
tr
θ = tan

(
θ − θa

)
(6)

where x and xa are for the refined box and anchor respectively
(likewise for y, w, h, θ ).

In CFC-Net, we set A = 1, which means that only one
initial anchor is used. Therefore, we do not need to carefully
set the hyperparameters of angle, aspect ratio, and scale for
anchors such as the current anchor-based methods owing
to the R-ARM. It is noted also that we do not integrate
classification prediction in R-ARM such as some cascade
regression approaches [33], [38]. This is due to the following
considerations.

1) Classification in the refining stage is not accurate
enough. As a result, the model may mistakenly exclude
the potential high-quality candidates, leading to a poor
recall of detections.

2) As mentioned in Section I, there is a gap between
classification and regression. The high classification
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Fig. 7. Analysis of the classification and regression capabilities of anchors
that use input IoU for label assignment. (a) Before regression. (b) After
regression.

score does not guarantee accurate localization. There-
fore, the training sample selection based on classifica-
tion confidence in anchor refinement will degrade the
detection performance.

Compared with previous one-stage detectors, CFC-Net
needs fewer predefined anchors, but achieves better detection
performance with the R-ARM. As illustrated in Fig. 5, guided
by the critical regression features generated by PAM, the initial
square anchor produces a more accurate rotated candidate via
R-ARM. The refined anchor aligns well with the high-response
region that captures critical features, which provides an effec-
tive semantic prior for subsequent localization.

C. Dynamic Anchor Learning

In the previous sections, we have introduced the critical
feature extraction structure and high-quality anchor generation
in CFC-Net. However, the misalignment between classification
and regression tasks still exists, that is, the high classifica-
tion scores cannot guarantee the accurate localization of the
detections. This issue has been widely discussed in many
studies [39]–[42]. Some of the work attributed it to the
regression uncertainty [40], [42], which reveals that the local-
ization results obtained by the regression are not completely
credible. We believe that the gap between classification and
regression mainly comes from unreasonable training sample
selection [43], and further solve this problem from the per-
spective of critical features.

Current detectors usually select positive anchors for training
according to the IoU between anchors and GT boxes. For
simplicity, we denote the IoU between anchors and GT boxes
as IoUin, while the IoU between the predicted boxes and GT
boxes as IoUout. The selected positive anchors are supposed
to have good semantic information which is conducive to
object localization. As shown in Fig. 7(a), there is a positive
correlation between the classification score and the IoUin.
However, the high IoUin does not guarantee good localization
potential of the anchors, and as shown in Fig. 7(b), there is
only a weak correlation between the classification confidence
and localization capability of predicted boxes. We suggest that
one of the main causes is that the samples selected according
to the IoUin do not align well with the critical features of the
objects.

To resolve the above problems, a DAL method is adopted
to select samples with strong critical feature capturing ability

in the training phase. DAL consists of two parts: DAS and
matching-sensitive loss (MSL). The rest of this section will
elaborate on the implementation of the two strategies.

First, we adopt a new standard called matching degree to
guide training sample division. It is defined as follows:

md = α · IoUin + (1 − α) · IoUout − uγ (7)

in which IoUin and IoUout are the IoUs between the anchor
box and the GT box before and after regression, respectively.
α and γ are hyperparameters used to weight the influence
of different items. u is the penalty term used to suppress
the uncertainty during the regression process. The matching
degree combines the prior information of spatial alignment,
critical feature alignment ability, and regression uncertainty of
the anchor to measure its localization capacity. Specifically, for
a predefined anchor and its assigned GT box, IoUin denotes the
initial spatial alignment ability, while IoUout indicates the crit-
ical feature alignment ability. Intuitively, higher IoUout means
that the anchor better captures critical regression features and
has a stronger localization potential. However, actually, this
indicator is unreliable due to the regression uncertainty. For
example, the high-quality anchors with high IoUin but low
IoUout may be mistakenly judged as negative samples [43] in
the early stages of training.

Therefore, in (7) we further introduce the penalty term u to
alleviate the influence from regression uncertainty. It is defined
as follows:

u = |IoUin − IoUout|. (8)

The change of IoU after regression indicates the prob-
ability of incorrect anchor assessment, and we use it to
measure regression uncertainty. Uncertainty suppression item
u imposes the penalty on samples with excessive IoU change
after regression to ensure a reasonable training sample selec-
tion. We will confirm in the experimental part that the sup-
pression of uncertainty during regression is the key to take
advantage of the critical features.

With the evaluation of the matching degree, we can conduct
better training sample selection. We first calculate the match-
ing degree between all anchors and GT boxes in the images,
and then candidates with matching degree higher than a certain
threshold (set to 0.6 in our experiment) are selected as positive
samples, while the rest are negatives. Next, for objects that are
not assigned with any positives, the candidate with the highest
matching degree would be selected as a positive sample.

The matching degree measures the ability of feature align-
ment. Therefore, the division of positive and negative sam-
ples is more reasonable, it would alleviate the misalignment
between the classification and regression. It can be seen from
Fig. 5 that DAL dynamically selects anchors that capture
the critical regression features for bounding box regression.
These high-quality candidates obtain accurate localization per-
formance after the regression by alleviating the misalignment
between classification and regression tasks.

We further integrate matching degree into the training
process to construct a MSL for high-precision object detection.
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The classification loss is as follows:
Lcls = 1

Nn

∑
i∈ψn

F L
(

pi , p∗
i

) + 1

Np

∑
j∈ψp

(w j +1) · F L
(

p j , p∗
j

)
(9)

in which Nn and Np inidcates the number of all negative
and positive anchors, respectively. ψn and ψp respectively
represent negative and positive samples. F L(·) is focal loss
defined as RetinaNet [44]. p∗ is the classification label for
anchor (p∗ = 1 if it is positive, while p∗ = 0 otherwise).
w j represents the weighting factor, which is utilized to dis-
tinguish positive candidates with different localization ability.
For a given target g, we first calculate its matching degrees
(denoted by md) with all preset anchors. Then we select
the matching degrees of positives (denoted by mdpos, and
mdpos ⊆ md). Assuming that the maximum value of mdpos is
mdmax, we define a compensation value �md as follows:

�md = 1 − mdmax. (10)

Subsequently, �md is added to the matching degree of all
positive candidates to obtain the weighting factor

w = mdpos +�md. (11)

The weighting factor improves the contribution of the
positive samples to the loss during training. In this way,
the classification branch can discriminate anchors with dif-
ferent capabilities to capture critical features. Compared with
the commonly used method that treats all positive anchors
equally, this discriminative approach helps to distinguish pos-
itive samples of different localization ability. By introducing
the localization information of anchors into the classification
loss, the classifier can output more reliable classification
confidence to select the detections with good localization,
thereby bridging the gap between classification and regression.

Since matching degree measures the localization ability
of anchors, it can be further used to promote high-quality
localization. The matching-sensitive regression loss is defined
as follows:

L reg = 1

Np

∑

j∈ψp

w j · LsmoothL1

(
t j , t∗

j

)
(12)

where LsmoothL1
represents the smooth-L1 loss [26]. t and t∗

are offsets for the predicted boxes and target boxes, respec-
tively. The weighted regression loss adaptively pays more
attention to the samples with high localization potential rather
than good initial spatial alignment, therefore, high-precision
detection would be achieved after training. It can be seen
from Fig. 8(a) that the detectors trained with normal smooth-
L1 loss shows a weak correlation between the classification
score and localization ability of the detections, which causes
the predictions selected by the classification confidence to
be unreliable. After training with a MSL function, as shown
in Fig. 8(b), the model outputs the detections with both better
localization performance and higher classification confidence,
facilitating the selection of high-quality detection based on the
classification score. The above analysis confirms the effective-
ness of the MSL.

Fig. 8. Correlation between the output IoU and classification score with and
without MSL. (a) Without MSL. (b) With MSL.

DAS strategy and MSL can also be employed to the anchor
refinement stage, and thus the multitask loss for CFC-Net is
defined as follows:

L = Lcls(p, p∗)+ λ1 L ref
(
t r, t∗) + λ2 L reg

(
t, t∗

)
(13)

where Lcls(p, p∗), L ref(t r, t∗), and L reg(t, t∗) are the classifi-
cation loss, anchor refinement loss, and regression loss, respec-
tively. t r , t denotes the predicted offsets of refined anchors and
detection boxes, respectively. t∗ represents the offsets of GT
boxes. These loss items are balanced via parameters λ1 and λ2

(we set λ1 = λ2 = 0.5 in our experiments).

IV. EXPERIMENTS

A. Datasets

Experiments are conducted on three public remote-sensing
datasets: HRSC2016, DOTA, and UCAS-AOD. The GT boxes
in these datasets are annotated with oriented bounding box.

HRSC2016 [45] is a high resolution remote-sensing ship
detection dataset with a total of 1061 images. The image sizes
range from 300 × 300 to 1500 × 900. The entire dataset is
divided into training set, validation set, and test set, including
436, 181, and 444 images, respectively. The images are resized
to two scales of 416 × 416 and 800 × 800 in our experiments.

DOTA [46] is the largest publicly available dataset for
oriented object detection in remote-sensing images. DOTA
includes 2806 aerial images with 1 88 282 annotated instances.
There are 15 categories in total, including plane (PL), baseball
diamond (BD), bridge (BR), ground track field (GTF), small
vehicle (SV), large vehicle (LV), ship (SH), tennis court (TC),
basketball court (BC), storage tank (ST), soccer ball field
(SBF), roundabout (RA), harbor (HA), swimming pool (SP),
and helicopter (HC). It is noted that images in DOTA are too
large, we crop the original images into 800 × 800 patches
with the stride 200 for training and testing.

UCAS-AOD [47] is an aerial aircraft and car detection
dataset, which contains 1510 images collected from Google
Earth. It includes 1000 planes images and 510 cars images
in total. Since there is no official division of this dataset.
we randomly divide it into training set, validation set, and
test set as 5:2:3. All images in UCAS-AOD are resized to
800 × 800 in the experiments.
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TABLE I

EFFECTS OF EACH COMPONENT OF CFC-NET

B. Implementation Details

The backbone of our CFC-Net is ResNet-50 [48]. The
model is pre-trained on the ImageNet and fine-tuned on
remote-sensing image datasets. We utilize the feature pyramid
of P3, P4, P5, P6, P7 to detect multi-scale objects. For each
position of the feature maps, only one anchor is set to regress
the nearby objects. We use random flipping, rotation, and
HSV jittering for data augmentation. We take matching degree
threshold of positives to be 0.4 for the refinement stage, while
0.6 for detection stage for high-quality detections.

The mean Average Precision (mAP) defined in PASCAL
VOC object detection challenge [49] is used as the evaluation
metric for all experiments. For a fair comparison with other
methods, experiments on all dataset use the mAP metric
defined in PASCAL VOC 2007 challenge. Most of our abla-
tion studies are conducted on the HRSC2016 dataset since
remote-sensing ships often have a large aspect ratio and scale
variation, which are major challenges for object detection
in optical remote-sensing images. In the ablation studies on
HRSC2016 dataset, all images are scaled to 416 × 416 without
data augmentation. Ablation experiments on DOTA dataset are
also provided to further prove the effectiveness of our method.

We train the model with the batch size set to 8 on RTX
2080Ti GPU. The network is trained with Adam optimizer.
The learning rate is set to 1e − 4 and is divided by 10 at each
decay step. The total iterations of HRSC2016, UCAS-AOD,
and DOTA are 10, 5, and 40 k, respectively.

C. Ablation Study

1) Evaluation of Different Components: We conduct com-
ponentwise experiments on HRSC2016 and DOTA datasets to
verify the contribution of the proposed components. The exper-
imental results are shown in Table I. Since only one anchor is
preset, it is difficult to capture the critical features required to
identify the objects, so the baseline model only achieves the
mAP of 70.5% on HRSC2016 and 68.1% on DOTA dataset.
The detection performance is increased by 5.7% with PAM
module on HRSC2016. It indicates that the PAM effectively
constructs more powerful feature representations, so that even
one preset anchor can make good use of critical features to
achieve accurate detection. The performance of the model is
improved by 8.2% on HRSC2016 with DAL, due to its ability
of selecting high-quality anchors with good critical feature
alignment in the learning process. The simultaneous use of
DAL and PAM achieves a mAP of 83.8%, indicating that the
two methods do not conflict and can effectively improve the

TABLE II

ABLATION STUDY OF THE PROPOSED PAM

TABLE III

EVALUATION OF η IN PAM

detection performance. The proposed R-ARM refines the hori-
zontal anchors to obtain high-quality rotated anchors. It further
improves the performance by 2.5%. Finally, CFC-Net reaches
the mAP of 86.3% and 72.0% on HRSC2016 and DOTA
respectively, proving the effectiveness of our framework.

2) Evaluation of PAM: To verify the effect of the pro-
posed PAM, we conducted comparative experiments on
HRSC2016 dataset. The results are shown in Table II. Using
dual FPN to extract independent features for classification and
regression branches, the detection performance is improved by
1.6% compared with the baseline model. However, dual FPN
does not fully extract the critical features for specific tasks.
When we adopt the attention mechanism based on dual FPN,
a further improvement of 2.8% is achieved. It indicates that the
attention mechanism enables the features of different branches
to better respond to the discriminative parts of the objects.
Through the polarization function, the discriminative parts of
the critical classification features are strengthened, while the
high response regions in the critical regression features are
suppressed to find more clues to further improve localization
results. The improvement of 1.3% based on the attention-based
model confirms our viewpoint. These experiments prove that
the proposed components of PAM can effectively improve the
detection performance.

We further conducted experiments to search for suitable η
for PAM, and the experimental results are shown in Table III.
When the η is small (η = 5), it can be seen from Fig. 9
that ψcls(x) tends to be linear, the activation is weak. The
performance is close to the baseline (75.41% compared to
75.49%). As the η increases, the activation effect gradually
increases. In this case, the activation function helps the PAM to
capture the key features for classification and thus it improves
the mAP by 0.79% with η set to 15. However, when η is
very large (for example, η = 150), ψcls(x) tends to be a
step function. The ψcls(x) in this case directly suppresses
the features of the low response. This will cause the neglect
of potentially critical features and lead to unstable training.
Therefore, the performance of the model with η = 150 in
PAM is even 0.64% lower than the baseline.

Some visualization results are shown in Fig. 10. It can be
seen that the heatmaps generated by PAM accurately respond
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Fig. 9. Diagram of ψcls(x) with different η.

Fig. 10. Visualization results of critical features for classification and
regression tasks. Compared with shared features, decoupled features can better
focus on the critical features of their respective tasks. (a) Images. (b) Shared
features. (c) Cls. features. (d) Reg. features.

TABLE IV

ABLATION STUDY OF DAL

to the area of task-sensitive critical features. The discriminative
areas required for classification are often concentrated in the
local part of objects, such as the stern and bow of ships.
Meanwhile, the clues required for regression are more likely
to be distributed on the edge of the objects or the contextual
information.

3) Evaluation of DAL: We conduct componentwise experi-
ments to verify the contribution of the DAL. The experimental
results are shown in Table IV, in which input IoU, output
IoU and regression uncertainty are denoted by the three terms
in (7), respectively. For the variants with output IoU, α is
set to 0.8 for stable training, and the detection performance
slightly increases from 70.5% to 71.3%. It indicates that using
output IoU alone is insignificant for training sample selection.
With the suppression of regression uncertainty, the prior space
alignment and posterior critical feature alignment would work
together to dramatically improve the performance by 5.7%

TABLE V

ABLATION STUDY OF THE PROPOSED R-ARM

TABLE VI

ANALYSIS OF INFLUENCE OF DIFFERENT HYPERPARAMETERS. “-” MEANS

THAT THE MODEL DOES NOT CONVERGE WITH THIS SETTING

compared with the baseline. Furthermore, matching degree
guided loss function effectively distinguishes anchors with dif-
ferential localization capability. The model using the matching
sensitivity loss function achieves the mAP of 78.7%,

4) Evaluation of R-ARM: Based on DAL and PAM, we fur-
ther conduct experiments to verify the effect of the pro-
posed R-ARM and explore the influence of the number of
refinement stages. For the model without R-ARM, we set
the matching degree threshold of positives to 0.4. For the
one-stage refinement model, the thresholds of the refine-
ment stage and the detection stage are set to 0.4 and 0.6,
respectively. The thresholds are set to 0.4, 0.6, and 0.8 for
two-stage refinement modules. As shown in Table V, with
one-stage R-ARM, the performance is increased by 2.5%,
since the refined proposals provide high-quality samples which
are better aligned with critical features of objects. However,
adopting two-stage R-ARM drops the performance by 1.8%
compared with the one-stage R-ARM. We suggest that as the
threshold increases in detection stage, the number of positives
decreases sharply, leading to insufficient positive samples and
a serious imbalance between positives and negatives. Thus we
use one stage R-ARM in CFC-Net.

5) Hyper-Parameters: To find suitable hyperparameter set-
tings, we conduct parameter sensitivity experiments, and the
results are shown in Table VI. As the α is reduced appro-
priately, the effect of feature alignment increases, and the
mAP increases. For example, on condition that γ is equal
to 4, as α decreases from 0.9 to 0.5, the mAP increases
from 72.1% to 78.7%. It indicates that under the premise
of uncertainty suppression, the feature alignment represented
by the IoUout is conducive to selecting anchors with high
localization capabilities. However, when α is extremely small,
the performance drops sharply (such as γ = 4), because the
anchors selected by the dominant output IoU may contain
too many false-positive samples. In this case, prior space
alignment can help alleviate this problem and make anchor
selection more stable. In addition, as γ decreases, the ability
to suppress disturbance samples is stronger, but it may also
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TABLE VII

COMPARISONS WITH DIFFERENT METHODS ON HRSC2016 DATASET

suppress the mining of potential positives, resulting in perfor-
mance degradation.

D. Main Results and Analysis

1) Results on HRSC2016: HRSC2016 contains lots of
remote-sensing oriented ships with large aspect ratios, scales
and orientations. Our method achieves competitive perfor-
mances on HRSC2016 dataset. As shown in Table VII, “aug”
represents using data augmentation, “ms” denotes multi-scale
training and testing, and NA is the number of preset anchors
at each location of feature maps. The proposed CFC-Net
achieves the mAP of 86.3% when input images are rescaled to
416 × 416 without data augmentation, which is comparable
to many previous advanced methods. With the input image
resized to 800 × 800 and data augmentation adopted, our
method reaches the mAP of 88.6%, which is better than
many recent methods. With multi-scale training and testing,
our method further achieves state-of-the-art performance on
HRSC2016 dataset among the compared methods, reaching
the mAP of 89.7%.

It is worth mentioning that our approach uses only one
horizontal anchor at each position of feature maps, but outper-
forms the frameworks with a large number of anchors. These
results show that it is unnecessary to preset a large number of
rotated anchors for oriented object detection. Instead, the more
important thing is to select high-quality anchors and capture
the critical features for object recognization. For instance,
the anchors in Fig. 11 have low IoUs with targets in the
images and will be regarded as negatives in most detectors.
However, they have a strong potential for accurate localization.
CFC-Net effectively utilizes these anchors to achieve accurate
prediction.

Moreover, our model is a single-stage detector, and uses
the feature maps of P3 − P7. Compared with the P2 − P6 for

Fig. 11. Detection results on HRSC2016 dataset with our method. The
red boxes and green boxes indicate the anchor boxes and detection results
respectively.

two-stage detectors, the total amount of positions that need to
set anchor is fewer, so the inference speed is faster. With the
input image resized to 800 × 800, our model reaches 28 FPS
on RTX 2080 Ti GPU. Besides, our method is similar to
anchor-free methods that also set one anchor at each location
on the feature maps, such as BBAVector [53], GRS-Det [54].
CFC-Net outperforms BBAVector and GRS-Det by 0.3% and
0.1%, respectively. Our inference speed is also faster than these
anchor-free methods (12 FPS for BBAVector and 14 FPS for
GRS-Det, while 28 FPS for CFC-Net).

2) Results on DOTA: We compare the proposed approach
with other state-of-the-art methods on DOTA dataset.
As shown in Table VIII, we achieve the mAP of 73.50%,
which reaches the best performance among the compared
methods. Some detection results on DOTA are shown
in Fig. 12. It can be seen from the illustration that even though
only one anchor is used, our CFC-Net still accurately detects
densely arranged small objects (such as ships, small vehicles,
and large vehicles in the third row). In addition, the proposed
detector achieve accurate detection on objects with various
scales. Take the second one (from the left) in the second row
for example, CFC-Net outputs the precise detections of both
large-scale roundabout and small vehicles at different scales.
Besides, as shown in the third figure and the fifth figure in
the first row, our method uses a few square anchors to detect
objects with very large aspect ratios (such as bridges and
harbors here), These detections indicate that it is not essential
for preset anchors to have a good spatial alignment with the
objects, while the key is to effectively identify and capture the
critical features of the objects. The matching degree measures
the critical feature capturing ability of anchors, and on this
basis, the DAL strategy performs a more reasonable selection
of training samples to achieve high-quality detection.

3) Results on UCAS-AOD: Experimental results in Table IX
show that our CFC-Net achieves the best performance among
the compared detectors, reaching the mAP of 89.49%. Note
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TABLE VIII

PERFORMANCE EVALUATION OF OBB TASK ON DOTA DATASET

Fig. 12. Visualization of detection results on DOTA dataset with our method.

TABLE IX

DETECTION RESULTS ON UCAS-AOD DATASET

that the original YOLOv3 [30] and RetinaNet [44] are
proposed for generic object detection, and the objects are
annotated with horizontal bounding box. To make a fair

comparison, we introduce an additional angle dimension and
perform angle prediction to achieve rotation object detection.
Our method outperforms the other compared single-stage
detectors, and even better than some advanced two-stage
detectors, such as RoI Transformer [15]. Besides, the detection
performance of small vehicles is excellent, which indicates that
our method is also robust to densely arranged small objects.

V. CONCLUSION

In this article, we introduce the concept of critical fea-
tures and prove its importance for high-performance object
detection through observations and experiments. On this basis,
a CFC-Net is proposed to optimize the one-stage detector
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from three aspects: feature representation, anchor refinement,
and training sample selection. Specifically, decoupled classi-
fication and regression critical features are extracted through
the polarization attention mechanism module based on dual
FPN. Next, the rotation anchor refinement is performed on one
preset anchor to obtain high-quality rotation anchors, which
can be better aligned with critical features. Finally, matching
degree is adopted to measure the ability of anchors to capture
critical features, so as to select positive candidates with high
localization potential. As a result, the inconsistency between
classification and regression is alleviated and high-quality
detection performance can be achieved. Extensive experiments
on three remote-sensing datasets verify the superiority of the
proposed method.
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